
WORKSHEET- ELCTROSTAT POTENTIAL AND CAPACITANCE

A. ELECTROSTATIC POTENTIAL ENERGY

(1 Mark Questions)

1. Figure shows the field lines on a positive charge. Is the work done by the field in moving a small positive charge from Q to P positive or negative? Give reason.

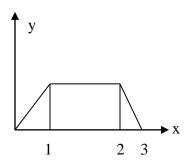
2. What is the amount of work done in moving a point charge around a circular arc of radius r at the centre of which another point charge is located?

(2 Marks Questions)

3. If one of the two electrons of a H₂ molecule is removed, we get a hydrogen molecular ion H₂⁺. In the ground state of an H₂⁺, the two protons are separated by roughly 1.5 A, and the electron is roughly 1 A from each proton. Determine the potential energy of the system. Specify your choice of the zero of potential energy. [Ans. 19.2 eV]

(3 Marks Questions)

4. An electric dipole consists of two opposite charges each of magnitude 1μc separated by 2cm. The dipole is placed in an external electric field of 10⁵ NC⁻¹. Find (i) the maximum


\sim	_
~	h
. 1	.,

	[Ans. 4×10^{-3} J]
Trans and the state of	A and D of animal at 1500 and 1000 and 1000 and
	A and B of values + 15μ C and + 9μ C are kept 18cm apart
Calculate the work of	done when charge B is moved by 3cm towards A. [Ans. 1.35J]
-	n for the potential energy of a system of two point charges and tric potential; of a charge.
-	
-	
=	
-	
-	
-	
In a hydrogen atom (a) Estimate the por	n, the electron and proton are bound at a distance of about 0 tential energy of the system in eV, taking the zero of the po
In a hydrogen atom (a) Estimate the porenergy at in (b) What is the minimum.	n, the electron and proton are bound at a distance of about 0 tential energy of the system in eV, taking the zero of the position of the electron from primum work required to free the electron, given that its kinetic electron.
In a hydrogen atom (a) Estimate the porenergy at in (b) What is the minimin the orbit is (c) What are the ans	a, the electron and proton are bound at a distance of about 0 tential energy of the system in eV, taking the zero of the position work required to free the electron, given that its kinetic half the magnitude of potential energy obtained in swers to (a) and (b) above if the zero of potential energy is to
In a hydrogen atom (a) Estimate the porenergy at in (b) What is the mining in the orbit is	a, the electron and proton are bound at a distance of about 0 tential energy of the system in eV, taking the zero of the position work required to free the electron, given that its kinetic half the magnitude of potential energy obtained in swers to (a) and (b) above if the zero of potential energy is taking the zero.
In a hydrogen atom (a) Estimate the porenergy at in (b) What is the minimin the orbit is (c) What are the ans	a, the electron and proton are bound at a distance of about 0 tential energy of the system in eV, taking the zero of the position work required to free the electron, given that its kinetic half the magnitude of potential energy obtained in swers to (a) and (b) above if the zero of potential energy is taking the zero.
In a hydrogen atom (a) Estimate the porenergy at in (b) What is the minimin the orbit is (c) What are the ans	n, the electron and proton are bound at a distance of about 0 tential energy of the system in eV, taking the zero of the po
In a hydrogen atom (a) Estimate the porenergy at in (b) What is the minimin the orbit is (c) What are the ans	a, the electron and proton are bound at a distance of about 0 tential energy of the system in eV, taking the zero of the position work required to free the electron, given that its kinetic half the magnitude of potential energy obtained in swers to (a) and (b) above if the zero of potential energy is taking the zero.
In a hydrogen atom (a) Estimate the porenergy at in (b) What is the minimin the orbit is (c) What are the ans	a, the electron and proton are bound at a distance of about 0 tential energy of the system in eV, taking the zero of the position work required to free the electron, given that its kinetic half the magnitude of potential energy obtained in swers to (a) and (b) above if the zero of potential energy is taking the zero.
In a hydrogen atom (a) Estimate the porenergy at in (b) What is the minimin the orbit is (c) What are the ans	a, the electron and proton are bound at a distance of about 0 tential energy of the system in eV, taking the zero of the position of the electron from imum work required to free the electron, given that its kinetic half the magnitude of potential energy obtained in swers to (a) and (b) above if the zero of potential energy is taken the swers to (a) and (b) above if the zero of potential energy is taken to the control of the zero of potential energy is taken to the control of the zero of potential energy is taken to the control of the zero of potential energy is taken to the control of the zero of potential energy is taken to the zero of the zero of potential energy is taken to the zero of zero

2	
.3	_/
_	•

8.	Four point charge Q, q, Q and q are placed at the corners of a square of side 'a' as shown in the figure.
	$Q \longrightarrow Q$ $Q \longrightarrow Q$
	Find the
	(a) resultant electric force on a charge Q, and
	(b) potential energy of this system
(5 ma	rks Questions)
9.	Derive an expression for the potential energy of an electric dipole in a uniform electric field. Explain conditions for stable and unstable equilibrium.

10. The electric potential as a function of distance x is shown in the figure. Draw a graph of the electric field E as a function of x

	χ1 U
4 4	

B. POTENTIAL

(1 Mark Questions)

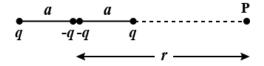
- 1. The physical quantity having SI unit NC⁻¹ m is _____.
- 2. What is the geometrical shape of equipotential surface due to a single isolated point charge?

3. Two charges 2 μC and $-2\mu C$ are placed at points A and B, 5 cm apart. Depict an equipotential surface of the system.

4.	Can there be a potential difference between two adjacent conductors carrying the same charge?
5.	Can the potential function have a maximum or minimum in free space?
6.	A test charge q is made to move in the electric field of a point charge Q along two different closed paths (Fig.). First path has sections along and perpendicular to lines of electric field. Second path is a rectangular loop of the same area as the first loop. How does the work done compare in the two cases?
(2 M 7.	Draw a plot showing variation of (i) electric field (E) and (ii) electric potential (V) with distance r due to a point charge Q.
8.	Define electric potential. Derive an expression for the electric potential at a distance r from a charge q.

39

-	+Q is place at point O as shown in the figure. Is the potential different negative or zero?
	Q O A B
and why?	
	$ \begin{array}{c} B \\ (2,3) \\ \hline (2,0) \\ C \end{array} $ $ \begin{array}{c} A(6,0) \\ \end{array} $

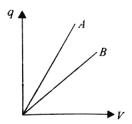

1	1
4	

	=	point $A(0, 0, -a)$ and I arge from point $P(7,0,$	
		44	
-	n of side 10 cm has an anter of the hexagon.	a charge 5 μC at each	of its vertices. Calcul [Ans. 2.7×10 ⁶ V
	•	Y	
•		origin. Calculate the very contract of the very con	•
(0,6 cm, 9 cm).			
_			
_			
_			
(0,6 cm, 9 cm).) has a charge g at	each of its vertices.	Determine the potenti
(0,6 cm, 9 cm). A cube of side b		each of its vertices. It	40

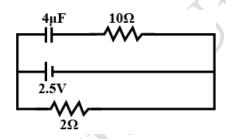
(3 Marks Questions)

electric po	Childi.
	pheres carrying charges 1.5 μ C and 2.5 μ C are located 30 cm apart. Find that electric field:
	nid-point of the line joining the two charges, and
(b) at a potential the mid-potential the mid-pot	nt 10 cm from this midpoint in a plane normal to the line and passing thro
	int. [Ans. $2.4 \times 10^5 \text{V}, 2 \times 10^5 \text{V}$
	int. [Ans. 2.4×10°V, 2×10°V]
	Int. [Ans. 2.4×10°V, 2×10°V]
	Int. [Ans. 2.4×10°V, 2×10°V]
Two charg	es $5 \times 10^{-8} \text{C}$ and $-3 \times 10^{-8} \text{C}$ are located 16 cm apart. At what point(s) or
Two charg	es 5×10^{-8} 8 C and -3×10^{-8} C are located 16 cm apart. At what point(s) or the two charges is the electric potential zero? Take the potential at infinit
Two charg	es $5 \times 10^{-8} \text{C}$ and $-3 \times 10^{-8} \text{C}$ are located 16 cm apart. At what point(s) or
Two charg	es 5×10^{-8} 8 C and -3×10^{-8} C are located 16 cm apart. At what point(s) or the two charges is the electric potential zero? Take the potential at infinit
Two charg	es 5×10^{-8} 8 C and -3×10^{-8} C are located 16 cm apart. At what point(s) or the two charges is the electric potential zero? Take the potential at infinit
Two charg	es 5×10^{-8} 8 C and -3×10^{-8} C are located 16 cm apart. At what point(s) or the two charges is the electric potential zero? Take the potential at infinit

21. Figure shows a charge array known as an electric quadrupole. For a point on the axis of quadrupole, obtain the dependence of potential on r for $r/a \gg 1$, and contrast your results with that due to an electric dipole, and an electric monopole (i.e., a single charge).


Derive the					
	potential due to	a dipole	at angular j	position.	
					<u> </u>
				·	
				4	
A cube to s	ide 20cm is kej				ctric field \vec{E} 5, where V is
	A. Carrier and A. Car	Potential	it a point	→ x	
in the region and x is in	A. Carrier and A. Car	nd		→ x	

The magnit	ude of electric field (in NC ⁻¹) in a region varies with the distance r (in 1
The magnit	E = 10r + 5
By how mu point at r =	sch does the electric potential increase in moving from point at $r=1\mathrm{m}$ m.
(a) What(b) Obtainr/a»1.	es -q and +q are located at points $(0,0, -a)$ and $(0,0, a)$, respectively. is the electrostatic potential at the points $(0,0,z)$ and the dependence of potential on the distance r of a point from the original characteristic potential on the distance r of a point from the original characteristic potential on the distance r of a point from the original characteristic potential on the distance r of a point from the original characteristic potential on the distance r of a point from the original characteristic potential characteristic potential on the distance r of a point from the original characteristic potential characteristic potential on the distance r of a point from the original characteristic potential ch
0, 0) along Does the a along the x-	nswer change if the path of the test charge between the some point
,	


26. Describe schematically the equipotential surfaces corresponding to
 A constant electric field in the z-direction. a field that uniformly increases in magnitude but remains in a constant (say, z) direction. a single positive charge at the origin, and a uniform grid consisting of long equally spaced parallel charged wires in a plane.
27. Draw an expression for the potential energy of an electric dipole in a uniform electric field. Explain conditions for stable and unstable equilibrium.
C. CAPACITOR
(1 Mark Questions)

45

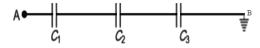
The given graph shows variation of charge 'q' versus potential difference 'V for two 1. capacitors C₁ and C₂. Both the capacitors have same plate separation but plate area of C₂ 46 is greater than the of C_1 . Which line (A or B) corresponds of C_1 and why?

A capacitor of 4 μ F is connected as shown in the circuit. The internal resistance of the 2. battery is 0.5Ω . The amount of charge on the capacitor plates will be

(a) 0

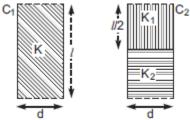
(b) 4 µ C

(c) 16 µ C


(d) $8 \mu C$

(2 Marks Questions)

3. What is law of capacitance?


What is the area of the plats of 2F parallel plate capacitor having separation between the 4. plates is 0.5 cm?

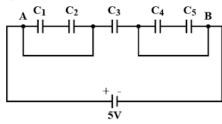
5. Calculate the potential difference and the energy stored in the capacitor C_2 in the circuit shown in the figure . Given potential at A is 90V. $C_1 = 20 \mu F$, $C_2 = 30 \mu f$ and $C_3 = 15 \mu f$.

6. A 12 μF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor? [Ans. 1.5×10⁻⁸ J]
7. A 600 μF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 μF capacitor. How much electrostatic energy is lost in the process? [Ans. 6×10⁻⁶ J]
8. What is the area of the plates of a 2 F parallel plate capacitor, given that the separation between the plates is 0.5 cm? [Ans. 1130 km²]

9. Two identical parallel plate (air) capacitor C_1 and C_2 have capacitances C each. The area between their plates is now filled with dielectrics as shown.

If the two capacitors still have equal capacitance, obtained the relation between dielectric constants K, K_1 and K_2 .

	_	
_ /	Ю	
- 4	ר אי	

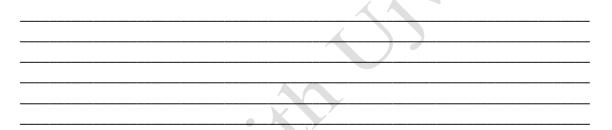

1	つ	M		I-~	$\boldsymbol{\alpha}$		~4:	~	~/
ı	•		Яr	K S		116	C I I	am	C 1

10.	Derive the capacitance of a parallel plate capacitor.	
		, (7)
		7/0

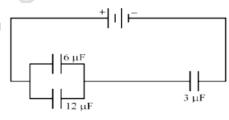
11. Three capacitors of capacitances C_1 , C_2 and C_3 are connected in series. Find their equivalent capacitance.

12. In a parallel plate capacitor with air between the plates, each plate has an area of $6 \times 10^{-3} \text{ m}^2$ and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this, capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor? [Ans. 15pF, 1.8×10^{-9} C]

13. In the figure given below, find the


(a) equivalent capacitance of the network between points A and B.

Given : $C_1 = C_5 = 4 \mu F$, $C_2 = C_3 = C_4 = 2 \mu F$


(b) Maximum charge supplied by the battery and

(c) total energy stored in the network

14. A 12 pF capacitor is connected to a 50V battery. How much electrostatic energy is stored in the capacitor? If another capacitor of 6 pF is connected in series with it with the same battery connected across the combination, find the charge stored and potential difference across each capacitor.

- 15. In the following arrangement of capacitors, the energy stored in the 6 μF capacitor is E. Find the value of the following.
 - (i) Energy stored in 12μF capacitor
 - (ii) Energy stored in 3 μF capacitor
 - (iii) Total energy drawn from the battery

- 16. Three capacitors each of capacitance 9 μ F are connected in series.
 - (a) What is the total capacitance of the combination?

connected to a 120 V supply?	[3pF, 40 V]	50
	$\overline{(C)}$	
Obtain the equivalent capacitance of the network in figure. For a 30 the charge and voltage across each capacitor.	00 V supply, determine [Ans. 10 ⁻⁸ C]	
100 pF C ₁ 200 pF 200 pF C ₂ C ₃ 100 pF 300 V		
Show that the force on each plate of a parallel plate capacitor has QE, where Q is the charge on the capacitor, and E is the magnetive between the plates. Explain the origin of the factor 1/2.		

17.

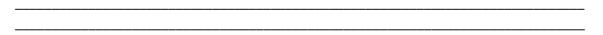
18. Show that the force on each plate of a parallel plate capacitor has magnitude equal to \(\frac{1}{2} \).

QE, where Q is the charge on the capacitor, and E is the magnitude of electric field between the plates. Explain the origin of the factor 1/2.

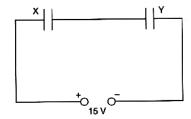
In a Van-de-Graff type generator, a spherical metal shell is to be a 15×10^6 V electrode. The dielectric strength of the gas surrounding the electrode is 5×10^7 V m¹. What is the minimum radius of the spherical shell required? [Ans. 30 cm]

_	1
5	

(5	mar	ks ()uesti	ions)


	Three capacitors of capacitances 2	μ F, 3 μ F and 4 μ F are connected in parallel.
	(a) What is the total capacitance of	
		capacitor if the combination is connected to a 100 V
	supply.	[Ans. (a) 9pF, (b) 2×10^{-10} C, 3×10^{-10} C, 4×10^{-10} C]
_		
_		
_		
_		
-		
_		
_		
-		
	What is the ratio of electric field	ds at the surfaces of the two spheres? Use the result
	What is the ratio of electric field obtained to explain why charge de	ds at the surfaces of the two spheres? Use the result
	What is the ratio of electric field obtained to explain why charge de	ds at the surfaces of the two spheres? Use the result
	What is the ratio of electric field obtained to explain why charge de	ds at the surfaces of the two spheres? Use the result
	What is the ratio of electric field obtained to explain why charge de	ds at the surfaces of the two spheres? Use the result
	What is the ratio of electric field obtained to explain why charge de	ds at the surfaces of the two spheres? Use the resul
	What is the ratio of electric field obtained to explain why charge de	of radii a and b are connected to each other by a wire ds at the surfaces of the two spheres? Use the result ensity on the sharp and pointed ends of a conductor is
	What is the ratio of electric field obtained to explain why charge de	ds at the surfaces of the two spheres? Use the resul
	What is the ratio of electric field obtained to explain why charge de	ds at the surfaces of the two spheres? Use the resul
	What is the ratio of electric field obtained to explain why charge de	ds at the surfaces of the two spheres? Use the resul

D. EFFECT OF DIELECTRIC ON CAPACITOR


(3 Marks Questions)

Explain why the polarization of a dielectric reduces the electric field inside the dielectric. 1. Hence define dielectric constant.

	dielectric constant' of a medium. Briefly why the capacitance of a parallel por increases, on introducing a dielectric medium between the plates?
mica she (a) Whi	what would happen if in the capacitor given in above question, a 3 mm eet (of dielectric constant = 6) were inserted between the plates. le the voltage supply remained connected. [Ans. 108pF, 16.]
	4
the swit	entical parallel plate capacitors A and B are connected to a battery of V volume of S closed. The switch is now opened and the free space between the planetions is filled with a dielectric of dielectric constant K. Find the ratio of the tatic energy stored in both capacitors before and after the introduction of the constant K.
) > '	$\begin{bmatrix} & & & & \\ & & & \\ \hline & & & & \\ \end{bmatrix}$

5. Two parallel plate capacitors X and Y have the same area of separation between them. X has air between the plates while Y contains a dielectric of $\varepsilon_r = 4$.

- (i) Calculate capacitance of each capacitor if equivalent capacitance of the combination is $4\mu F.$
- (ii) Calculate the potential difference between the plates of X and Y.

(iii)	Estimate the ratio of electrostatic energy stored in X and Y.

- 6. A parallel plate capacitor of capacitance 'C' is charged to 'V' volt by a battery. After sometime the battery is disconnected and the distance between the plates is doubled. Now a slab of dielectric constant 1 < K < 2 is introduced to fill the space between the plates. How will the following be affected?
 - (i) the electric field between the plate of the capacitor?
 - (ii) The energy stored in the capacitor.

Justify your answer in each case.

) Y	
7	

7. A parallel plate capacitor with air between the plates has a capacitance of $8 \mu F$. What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6? [Ans. 96 pF]

۲	1

	A parallel plate capacitor is to be designed with a voltage rating 1 kV, using a mater dielectric constant 3 and dielectric strength about 10 ⁷ V m ⁻¹ . For safety, we shout the field never to exceed, say 10% of the dielectric strength. What minimum area
	plates is required to have a capacitance of 50 μ F? [Ans. 19 cm ²]
a	rks Questions)
	irks Questions)
	Two capacitors with capacity C_1 and C_2 are charged to potential V_1 and V_2 respect and then connected in parallel. Calculate the common potential across the combinative charge on each capacitor, the electrostatic energy stored in the system and the components of the charge of the components of the charge of the
	Two capacitors with capacity C_1 and C_2 are charged to potential V_1 and V_2 respect and then connected in parallel. Calculate the common potential across the combination
	Two capacitors with capacity C_1 and C_2 are charged to potential V_1 and V_2 respect and then connected in parallel. Calculate the common potential across the combinative charge on each capacitor, the electrostatic energy stored in the system and the components of the charge of the components of the charge of the
	Two capacitors with capacity C_1 and C_2 are charged to potential V_1 and V_2 respect and then connected in parallel. Calculate the common potential across the combinative charge on each capacitor, the electrostatic energy stored in the system and the components of the charge of the components of the charge of the
	Two capacitors with capacity C_1 and C_2 are charged to potential V_1 and V_2 respect and then connected in parallel. Calculate the common potential across the combinative charge on each capacitor, the electrostatic energy stored in the system and the components of the charge of the components of the charge of the
	Two capacitors with capacity C_1 and C_2 are charged to potential V_1 and V_2 respect and then connected in parallel. Calculate the common potential across the combinative charge on each capacitor, the electrostatic energy stored in the system and the components of the charge of the components of the charge of the
	Two capacitors with capacity C_1 and C_2 are charged to potential V_1 and V_2 respect and then connected in parallel. Calculate the common potential across the combinative charge on each capacitor, the electrostatic energy stored in the system and the components of the charge of the components of the charge of the

				A	
State the worki	ng of principle	of Van-de-graft	generator w	ith the help	of neat an
	ng of principle	of Van-de-graft	generator w	ith the help	of neat an
State the worki diagram.	ng of principle	of Van-de-graft	generator w	rith the help	of neat an
	ng of principle	of Van-de-graft	generator w	rith the help	of neat an
	ng of principle	of Van-de-graft	generator w	rith the help	of neat an
	ng of principle	of Van-de-graft	generator w	rith the help	of neat an
	ng of principle	of Van-de-graft	generator w	rith the help	of neat an
	ng of principle	of Van-de-graft	generator w	rith the help	of neat an
	ng of principle	of Van-de-graft	generator w	rith the help	of neat an
	ng of principle	of Van-de-graft	generator w	rith the help	of neat an
	ng of principle	of Van-de-graft	generator w	rith the help	of neat an

E. CHALLENGING PROBLEMS

- 1. Answer the following:
 - (i). The top of the atmosphere is at about 400 kV with respect to the surface of the earth, corresponding to an electric field that decreases with altitude. Near the surface of the earth, the field is about 100 V m⁻¹. Why then do we not get an electric shock as we step out of our house into the open? (Assume the house to be a steel cage, so there is no field inside).
 - (ii) A man fixes outside house one evening a two metre high insulating slab carrying on its top a large aluminium sheet of area 1 m². Will he get an electric shock if he touches the metal sheet next morning?

known to be 1800 A on an average over the globe. Why then does the atmosphere not discharge itself completely in due course and become electrically neutral? In other words, what keeps the atmosphere charged?	
(iv) What are the forms of energy into which the electrical energy of the atmosphere is dissipated during a lightning?	
//	

(iii) The discharging current in the atmosphere due to the small conductivity of air is

Ľ	7
ה	/

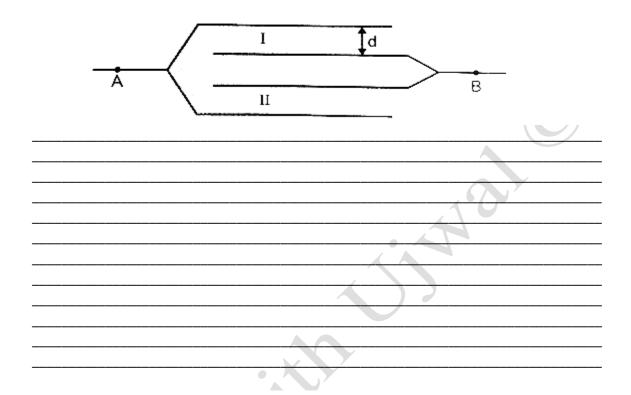
 	 \mathcal{A}
Ca	

- 3. Show that the normal component of electrostatic field has a discontinuity from one side of a charged surface to another given by $(\vec{E}_2 \vec{E}_1).\hat{n} = \frac{\sigma}{\epsilon_0}$ where \hat{n} is a unit vector normal to the surface at a point and σ is the surface charge density at that point. (The direction of n is from side 1 to side 2). Hence show that just outside a conductor, the electric field is $\sigma \frac{\hat{n}}{\epsilon_0}$.
 - (b) Show that the tangential component of electrostatic field is continuous from one side of a charged surface to another.

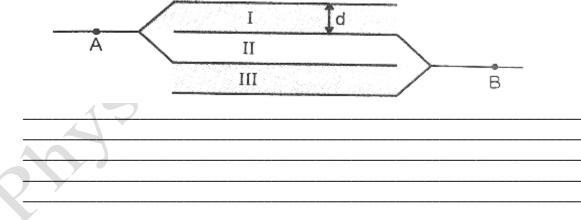
					-
				7 0	
			•		
		. X			
			V		
		/ 1	,		
	technician re	equires a canac	citance of 2 uF	in a circuit a	cross a note
An electrical		equites a capa	E compositors one	iii a ciicaii a	cross a pote.
An electrical difference of	kV. A large	e number of 1 u	ir cadaciiois are	available to h	im each of w
difference of	l kV. A large	e number of 1 µ I difference of	f not more than	available to h	im each of w
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w ggest a poss
difference of can withstand	l kV. A large l a potential	difference of	f not more than amber of capacito	400 V. Su	im each of w ggest a poss
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w ggest a poss
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w ggest a poss
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w ggest a poss
	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w ggest a poss
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w
difference of can withstand	l kV. A large l a potential	difference of	f not more than	400 V. Su	im each of w

4.

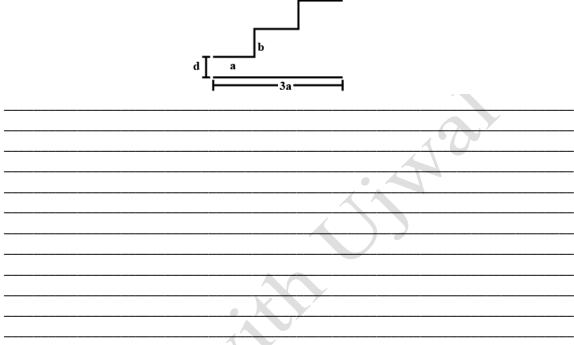
				((
				A
				10
				7
			7	
		• / /		
		4		
A small sphere o charge q ₂ . Show shell (when the ty	that if q ₁ is posit	tive, charge wil	ll necessary flov	v from the sphere
-				
)				

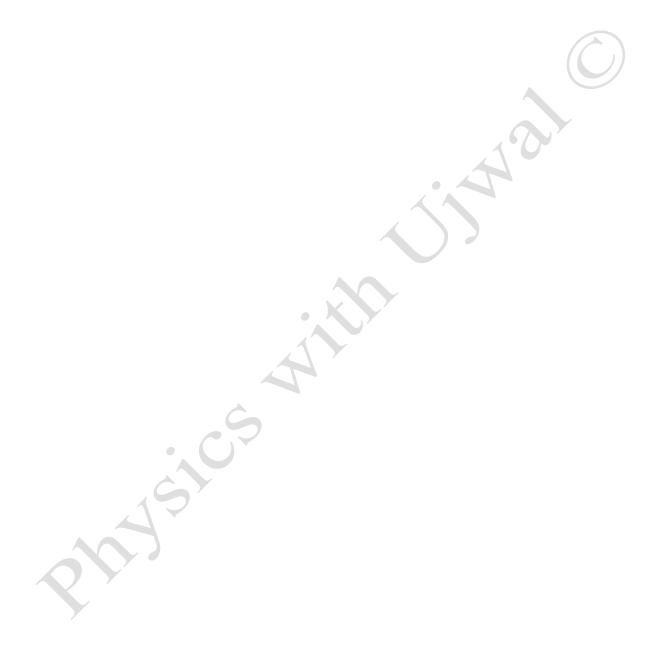

 	((
 	<u> </u>

- 8. Answer carefully:
 - 1. Two large conducting spheres carrying charges Q_1 and Q_2 are brought close to each other, is the magnitude of electrostatic force between them exactly given by $\frac{Q_1Q_2}{4\pi\epsilon_0r^2}$ r is


the distance between their centres?

- 2. If coulomb's law involved $1/r^3$ dependence (instead of $1/r^2$), would Gauss's law be still true?
- 3. A small test charge is released at rest at a point in an electrostatic field configuration. Will it travel along the field line passing through that point?
- 4. What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?


'Is electric potential also discontinuous there? What meaning would you give to the capacitance of a single conductor? Guess a possible reason why water has a much greater dielectric constant {-80 say, mica (= 6).	nduc
Guess a possible reason why water has a much greater dielectric constant {-80	
say, mica (= 6).)) the
	-//



What is the capacitance of arrangement of a 4 plates of area A at distance d in air in 10. figure? [Ans. $3\varepsilon_0 A/d$]

11.	A capacitor is made of flat plate area A and a second plate having a stair like structure, as
	shown in figure. The width of each stair is a and height is b. Find the capacitance of the
	assembly.

