WORKSHEET- MAGNETISM AND MATTER

A. BAR MAGNET & MAGNETIC FIELD LINES

(1 M	ark	Questions))
------	-----	------------	---

1.	What is source of magnetic field?
2	W's GL 's CODI of the LOW Market But I
2.	Write S.I. unit of (i) Pole strength and (ii) Magnetic dipole moment.
(2 N	Iarks Questions)
3.	How does the (i) pole strength and (ii) magnetic moment of each part of bar magnet change if it is cut into two equal pieces transverse to its length?
	•. 0
4.	A magnetized needle in a uniform magnetic field experiences a torque but no net force
	An iron nail near a bar magnet, however, experiences a force of attraction in addition to a torque. Why?
~	
5.	A short bar magnet placed with its axis at 30° with a uniform external magnetic field of
٥.	0.25 T experiences a torque of magnitude equal to 4.5×10^{-2} J. What is the magnitude of
	magnetic moment of the magnet? [Ans. 0.36 JT ⁻¹]

1	2	7
- 1	.5	Z

A short bar magnet of magnetic moment $m = 0.32 \text{ J T}^{-1}$ is placed in a uniform magnifield of 0.15 T. If the bar is free to rotate in the plane of the field, which oriental would correspond to its (a) stable, and (b) unstable equilibrium? What is the potential of the pote
energy of the magnet in each case? [Ans. -4.8×10^{-2} J, $+4.8 \times 1$
A closely wound solenoid of 800 turns and area of cross section 2.5×10^{-4} m ² carricular current of 3.0 A. Explain the sense in which the solenoid acts like a bar magnet. What its associated magnetic moment? [Ans. 0.60 JT ⁻¹]
If the solenoid in previous Question is free to turn about the vertical direction ar uniform horizontal magnetic field of 0.25 T is applied, what is the magnitude of too on the solenoid when its axis makes an angle of 30° with the direction of applied field [Ans. 7.5×10^{-2}]
How does the (i) pole strength and (ii) magnetic moment of each part of a bar magnet change if it is cut into two equal pieces transverse to its length?

	magnet placed with its axis at 30° with a uniform external magnetic field of tiences a torque of magnitude equal to 4.5×10^{-2} J. What is the magnetic he magnet? [Ans. 0.36JT^{-1}]
magnetic fi	eld of 0.15T. If the bar is free to rotate in the plane of the field, which
magnetic fi orientations	eld of 0.15T. If the bar is free to rotate in the plane of the field, which
magnetic fi orientations	eld of 0.15T. If the bar is free to rotate in the plane of the field, which would correspond to its (i) stable and (ii) unstable equilibrium? What is the
magnetic fi orientations	magnet of magnetic moment $m=0.32~\mathrm{JT^{-1}}$ is placed in a uniform external eld of 0.15T. If the bar is free to rotate in the plane of the field, which would correspond to its (i) stable and (ii) unstable equilibrium? What is the ergy of the magnet in each case? [Ans. $-4.8\times10^{-2}\mathrm{J}$, $+4.8\times10^{-2}\mathrm{J}$]
magnetic fi orientations	eld of 0.15T. If the bar is free to rotate in the plane of the field, which would correspond to its (i) stable and (ii) unstable equilibrium? What is the ergy of the magnet in each case? [Ans. – 4.8×10 ⁻² J, +4.8×10 ⁻² J]
magnetic fi orientations potential en	eld of 0.15T. If the bar is free to rotate in the plane of the field, which would correspond to its (i) stable and (ii) unstable equilibrium? What is the ergy of the magnet in each case? [Ans. – 4.8×10 ⁻² J, +4.8×10 ⁻² J]
magnetic fit orientations potential en A closely w current of 3	eld of 0.15T. If the bar is free to rotate in the plane of the field, which would correspond to its (i) stable and (ii) unstable equilibrium? What is the ergy of the magnet in each case? [Ans. – 4.8×10 ⁻² J, +4.8×10 ⁻² J]

ks Questions)	
State Gauss's law for	magnetism. Explain its significance.
	4.0
Justify that both the	agnets P and Q are placed in two identical uniform magnetic fields are magnets are in equilibrium. Which one of these is in stable
Justify that both the	
Justify that both the	e magnets are in equilibrium. Which one of these is in stable
Justify that both the	e magnets are in equilibrium. Which one of these is in stable
Justify that both the	e magnets are in equilibrium. Which one of these is in stable asons for your answer.
Justify that both the	e magnets are in equilibrium. Which one of these is in stable asons for your answer.
Justify that both the	e magnets are in equilibrium. Which one of these is in stable asons for your answer.
Justify that both the equilibrium? Give rea	e magnets are in equilibrium. Which one of these is in stable asons for your answer.
Justify that both the equilibrium? Give rea	agnetic moments M and $M\sqrt{3}$ are joined to form a cross. The
Justify that both the equilibrium? Give rea	e magnets are in equilibrium. Which one of these is in stable asons for your answer. $\frac{1}{2} = \frac{1}{2} =$
Justify that both the equilibrium? Give rea	agnetic moments M and $M\sqrt{3}$ are joined to form a cross. The
Justify that both the equilibrium? Give rea	agnetic moments M and $M\sqrt{3}$ are joined to form a cross. The nded in a uniform magnetic field B. The magnetic moment M now ith the field direction. Find the value of angle θ .
Justify that both the equilibrium? Give rea	e magnets are in equilibrium. Which one of these is in stable asons for your answer. $\frac{1}{2} = \frac{1}{2} =$
Justify that both the equilibrium? Give rea	agnetic moments M and $M\sqrt{3}$ are joined to form a cross. The nded in a uniform magnetic field B. The magnetic moment M now ith the field direction. Find the value of angle θ .

	agnet of magnetic moment 1.5 J T^{-1} lies aligned with the direction of a uniform a field of 0.22 T.
_	t is the amount of work required by an external torque to turn the magnet so as to
align its	magnetic moment: (i) normal to the field direction, (ii) opposite to the field
direction	
(b) Wha	t is the torque on the magnet in cases (i) and (ii)?
	[Ans. (a) (i)0.33Nm, (ii) 0.66J (b) 0]
A short	bar magnet has a magnetic moment of 0.48 J T ⁻¹ . Give the direction and
magnitue centre o	de of the magnetic field produced by the magnet at a distance of 10 cm from the f the magnet on (a) the axis, (b) the equatorial lines (normal bisector) of the
magnet.	[Ans. 0.48G]
	9
	17
A 6	
	etic dipole is under the influence of two magnetic fields. The angle between the ections is 60°, and one of the fields has a magnitude of 1.2×10^{-2} T. If the dipole
field dire	

1	2	-
1	.3	b.

21.	A bar magnet of magnetic moment 1.5 JT ⁻¹ lies aligned with the direction of a uniform
	magnetic field of 0.22T. (a) What is the amount of work required to turn the magnet so as
	to align its magnetic moment (i) normal to the field direction (ii) opposite to the field
	direction? (b) What is the torque on the magnet in case (i) and (ii)?

[Ans. (i) +0.33J, 0.33Nm (ii) 0.66J, 0]

22.	A Rowland ring of mean radius 15cm has 3500 turns of wire wound on a ferromagnetic
	wire of relative permeability 800. What is the magnetic field (B) in the core for a
	magnetizing current of 1.2A?

(5 Marks Questions)

23. A closely wound solenoid of 2000 turns and area of cross section 1.6×10⁻⁴ m², carrying a current of 4.0A, is suspended through its centre allowing it to turn in a horizontal plane.

(a) What is the magnetic moment associated with the solenoid?

of 7.5×10^{-2} T is set up at an angle of 30° with	
	[Ans. 1.28 Am ² , 0.0048Nm]
A circular coil of 16 turns and radius 10	em carrying a current of 0.75A rests with its
lane normal to an external field of magnitude	ade 5.0×10^{-2} T. The coil is free to turn about an
•	direction. When the coil is turned slightly and
	•
-	brium with a frequency of 2.0 s ⁻¹ . What is the
noment of inertia of the coil about its axis	of rotation? [Ans. $1.2 \times 10^{-4} \text{ kg m}^2$]
	_
	of two magnetic fields. The angle between the
ield direction is 60° and one of the fields	has a magnitude of 1.2×10 ⁻² T. If the dipole
ield direction is 60° and one of the fields	

		• ,
		•
		-
		-
		-
LA.	ARTH'S MAGNETISM	-
Į	ark Questions)	
	Where on the surface of Earth is the vertical component of Earth's magnetic field zero?	
	The material which is not suitable for making a permanent magnet is	
	(a) Steel (b) Ticonal (c) Lead (d) Alnico	
	If the horizontal and vertical components of the Earth's magnetic field are equal at a certain place, what would be the angle of dip at that place?	
	Answer the following questions regarding earth's magnetism: (1 mark each) (a) A vector needs three quantities for its specification. Name the three independent quantities conventionally used to specify the earth's magnetic field.	
	<u>/</u>	
	(b) The angle of dip at a location in southern India is about 18°. Would you expect a greater or smaller dip angle in Britain?	l

(d) In which direction would a compass free to move in the vertical located right on the geomagnetic north or south pole?	cal plane point to, i
(e) The earth's field, it is claimed, roughly approximates the field magnetic moment 8×10^{22} J T ⁻¹ located at its centre. Check the or this number in some way.	
(f) Geologists claim that besides the main magnetic N-S poles, the poles on the earth's surface oriented in different directions. How is	
at all?	
How does the angle of dip vary from equator to poles?	
Answer the following: (1 mark each)	
(a) The earth's magnetic field varies from point to point in space.	Does it also change
with time? If so, on what time scale does it change appreciably?	
(b) The earth's core is known to contain iron. Yet geologists do source of earth's magnetism. Why?	not regard this as

(1) (7)	
•	rsed the direction of its field several times during it w can geologists know about the earth's field in suc
distant past?	v can geologists know about the earth's field in suc.
distant past.	1.00
• /	e dipole shape substantially at large distances (greate
than about 30,000 km). What agenc	ies may be responsible for this distortion?
(f) Interstellar space has an extrem such a weak field be of any significa	ely work magnetic field of the order of 10 ⁻¹² T. Carant consequence? Explain.
25	
• () '	
(6)	f earth's magnetic field.
Name the elements of parameters of	f earth's magnetic field.
(6)	f earth's magnetic field.
(6)	f earth's magnetic field.
Name the elements of parameters of	
(6)	
Name the elements of parameters of	

7.

8.

9.

141

 Horizontal components of Earth's magnetic field at a place is √3 times the vert component. What is the value of angle of dip at this place? Where on the surface of the earth is the angle of dip (i) 0° and (ii) 90°? (2 Marks Questions) At a certain location in Africa, a compass points 12° west of the geographic north. north tip of the magnetic needle of a dip circle placed in the plane of magnetic merical components.
(2 Marks Questions) 12. At a certain location in Africa, a compass points 12° west of the geographic north.
(2 Marks Questions) 12. At a certain location in Africa, a compass points 12° west of the geographic north.
12. At a certain location in Africa, a compass points 12° west of the geographic north.
12. At a certain location in Africa, a compass points 12° west of the geographic north.
points 60° above the horizontal. The horizontal component of the earth's field measured to be 0.16 G. Specify the direction and magnitude of the earth's field at location. [Ans. 0.32G]
(3 Marks Questions)
13. A bar magnet of magnetic moment 6 JT ⁻¹ is aligned at 60° with a uniform extermagnetic field of 0.44T. Calculate (a) the work done in turning the magnet to align magnetic moment (i) normal to the magnetic field, (ii) opposite to the magnetic field, (b) the torque on the magnet in the final, orientation in case (ii)

	_	_
- 1	1.	"
	~	_

14.	A magnetic needle free to rotate in a vertical plane parallel to the magnetic meridian has its north tip pointing down at 22° with the horizontal. The horizontal component of the earth's magnetic field at the place is known to be 0.35 G. Determine the magnitude of the earth's magnetic field at the place. [Ans. 0.38G]
15.	A short bar magnet placed in a horizontal plane has its axis aligned along the magnetic north-south direction. Null points are found on the axis of the magnet at 14 cm from the centre of the magnet. The earth's magnetic field at the place is 0.36 G and the angle of dip is zero. What is the total magnetic field on the normal bisector of the magnet at the same distance as the null—point (i.e., 14 cm) from the centre of the magnet? (At <i>null points</i> , field due to a magnet is equal and opposite to the horizontal component of earth's magnetic field.) [Ans. 0.54G]
16.	If the bar magnet in previous question is turned around by 180°, where will the new null points be located? [Ans. 11.1 cm]
17.	A short bar magnet of magnetic moment $5.25 \times 10^{-2} \mathrm{J}$ T ⁻¹ is placed with its axis perpendicular to the earth's field direction. At what distance from the centre of the magnet, the resultant field is inclined at 45° with earth's field on (a) its normal bisector and (b) its axis. Magnitude of the earth's field at the place is given to be 0.42 G. Ignore the length of the magnet in comparison to the distances involved. [Ans5cm, 6.3cm]

_	
wo th an	long straight horizontal cable carries a current of 2.5 A in the direction 10° south of est to 10° north of east. The magnetic meridian of the place happens to be 10° west of e geographic meridian. The earth's magnetic field at the location is 0.33 G, and the agle of dip is zero. Locate the line of neutral points (ignore the thickness of the cable).
	at <i>neutral points</i> , magnetic field due to a current-carrying cable is equal and opposite to e horizontal component of earth's magnetic field.) [Ans. 1.5 cm]
In	the magnetic meridian of a certain place, the horizontal component of the earth's
m	agnetic field is 0.26G and the dip angle is 60°. What is the magnetic field of earth in is location? [Ans. 0.52G]

- 20. A compass needle free to turn in a horizontal plane is placed at the centre of circular coil of 30 turns and radius 12 cm. The coil is in a vertical plane making an angle of 45° with the magnetic meridian. When the current in the coil is 0.35 A, the needle points west to east
 - (a) Determine the horizontal component of the earth's magnetic field at the location.

	A telephone cable at a place has four long straight horizontal wires carrying a current of 1.0A in the same direction east to west. The earth's magnetic field at the place is 0.39G and the angle of dip is 35°. The magnetic declination is nearly zero. What are the resultant magnetic fields at points 4.0cm below, and above the cable?
1	AGNETIC MATERIAL
	rk Questions)
a	

magnetising field) when cooled?	14
(b) Why is diamagnetism, in contrast, almost independent of temperature?	
(c) If a toroid uses bismuth for its core, will the field in the core be (slightly) greater or	
(slightly) less than when the core is empty?	
(d) Is the permeability of a ferromagnetic material independent of the magnetic field? If not, is it more for lower or higher fields?	
(e) Magnetic field lines are always nearly normal to the surface of a ferromagnet at every point. (This fact is analogous to the static electric field lines being normal to the surface of a conductor at every point.) Why?	
(f) Would the maximum possible magnetisation of a paramagnetic sample be of the same	
order of magnitude as the magnetization of a ferromagnet?	
order of magnitude as the magnetization of a ferromagnet?	
Answer the following questions: (1 mark each)	

steel piece. If the material is to go through repeated cycles of magnetisation, which p	piece
vill dissipate greater heat energy?	_
(c) 'A system displaying a hysteresis loop such as a ferromagnet, is a device for stomemory?' Explain the meaning of this statement.	oring
(d) What kind of ferromagnetic material is used for coating magnetic tapes in a cas player, or for building 'memory stores' in a modern computer?	sette
(e) A certain region of space is to be shielded from magnetic fields. Suggest a method	1.
(a) magnetic moment of each molecule is zero.	S41
(a) magnetic moment of each molecule is zero.(b) the individual molecules have non-zero magnetic moment which are all perfections.	ectly
In a permanent magnet at room temperature (a) magnetic moment of each molecule is zero. (b) the individual molecules have non-zero magnetic moment which are all perfectly aligned. (c) domains are partially aligned. (d) domains are all perfectly aligned.	ectly
(a) magnetic moment of each molecule is zero.(b) the individual molecules have non-zero magnetic moment which are all perfections.	ectly
(a) magnetic moment of each molecule is zero.(b) the individual molecules have non-zero magnetic moment which are all perfealigned.	ernal
(a) magnetic moment of each molecule is zero. (b) the individual molecules have non-zero magnetic moment which are all perfealigned. (c) domains are partially aligned. (d) domains are all perfectly aligned. A paramagnetic sample shows a net magnetisation of 8 Am ⁻¹ when placed in an extemagnetic field of 0.6T at a temperature of 4K. When the same sample is placed in external magnetic field of 0.2 T at a temperature of 16K, the magnetisation will be	ernal
(a) magnetic moment of each molecule is zero. (b) the individual molecules have non-zero magnetic moment which are all perfealigned. (c) domains are partially aligned. (d) domains are all perfectly aligned. A paramagnetic sample shows a net magnetisation of 8 Am ⁻¹ when placed in an extendance field of 0.6T at a temperature of 4K. When the same sample is placed in external magnetic field of 0.2 T at a temperature of 16K, the magnetisation will be	ernal

4.

5.

-	
]	Define magnetic susceptibility?
-	
-	
	The susceptibility of a magnetic material is 1.9×10^{-5} . Name the type fo magnetic materials it represents.
-	
•	What does the area of hysteresis loop indicate?
-	
-	
·l	ks Questions)
	If χ stands for the magnetic susceptibility of a given material, identify the class of material for which (i) $-1 \le \chi < 0$ (ii) $0 < \chi < \epsilon$ (ϵ stands for a small positive number)
-	
-	
_	
	Write two properties of a material suitable for making (a) a permanent magnet, and (b) an electromagnet.

What is hysteresis loo	p? Explain with its help the terms related to it.	
What is hysteresis loo	p? Explain with its help the terms related to it.	

(3 Marks Questions)

- 15. Show diagrammatically the behavior of magnetic field lines in the presence of (i) paramagnetic, and (ii) diamagnetic substances. How does one explain this distinguishing feature.
- 16. The following figure show the variation of intensity of magnetization versus the applied magnetic field intensity, H, for two magnetic materials A and B.

- (a) Identify the materials A and B
- (b) For the materials A, plot the variation of intensity of magnetization versus temperature.

Explain the phenomenon of hysteresis in magnetic materials. Draw a hysteresis loop
showing remanence and coercive force.
A Rowland ring of mean radius 15 cm has 3500 turns of wire wound on a ferromagnetic core of relative permeability 800. What is the magnetic field B in the core for a magnetising current of 1.2 A? [Ans. 4.48T]
core of relative permeability 800. What is the magnetic field B in the core for a
core of relative permeability 800. What is the magnetic field B in the core for a
core of relative permeability 800. What is the magnetic field B in the core for a
core of relative permeability 800. What is the magnetic field B in the core for a

20. What is hysteresis loop? Explain with its help the terms related to it.

rks Questions)		
magnetic perm	neability (v) relative permeab	magnetization (iii) magnetic induction (iv) bility and (vi) magnetic susceptibility. Give en relative permeability and susceptibility.
		<u> </u>
		·
	Ġ	
of (i) magnetic materials.	d lines due to an external	, para- and ferromagnetic substances in terms ctivity. Give one example of each of these magnetic field near a (i) diamagnetic (ii)
<u> </u>		

1	L 1	
- 1	וכ	

CH	HALLENGING PROBLEMS
	Answer the following questions:
	(a) The earth's magnetic field varies from point to point in space.
	Does it also change with time? If so, on what time scale does it change appreciably?
	(b) The earth's core is known to contain iron. Yet geologists do not regard this as source of the earth's magnetism. Why?
	(a) The charged currents in the outer conducting regions of the conth's core are thought t
	(c) The charged currents in the outer conducting regions of the earth's core are thought to be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of energy) to sustain these currents?
	be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of
	be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of
	be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of energy) to sustain these currents?
	be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of energy) to sustain these currents? (d) The earth may have even reversed the direction of its field several times during its
	be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of energy) to sustain these currents? (d) The earth may have even reversed the direction of its field several times during it history of 4 to 5 billion years. How can geologists know about the earth's field in such
	be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of energy) to sustain these currents? (d) The earth may have even reversed the direction of its field several times during its
	be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of energy) to sustain these currents? (d) The earth may have even reversed the direction of its field several times during it history of 4 to 5 billion years. How can geologists know about the earth's field in such
	be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of energy) to sustain these currents? (d) The earth may have even reversed the direction of its field several times during it history of 4 to 5 billion years. How can geologists know about the earth's field in such
	be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of energy) to sustain these currents? (d) The earth may have even reversed the direction of its field several times during it history of 4 to 5 billion years. How can geologists know about the earth's field in such
	be responsible for earth's magnetism. What might be the 'battery' (i.e., the source of energy) to sustain these currents? (d) The earth may have even reversed the direction of its field several times during it history of 4 to 5 billion years. How can geologists know about the earth's field in succession.

(f) Interstellar space has an extremely weak magnetic field of the order of 10^{-12} T. Can such a weak field be of any significant consequence? Explain.

1	_	2
- 1	5	/

moment M is free to turn about agnetic field B. The moment of inertialightly disturbed from its stable positionally pass needle free to turn in a vertical place on the earth. Find out the value ic field and (b) angle of dip at the place

 		 	-
	• X		
	A)		
. 0			

