CLASS – 11

ASSIGNMENT- MECHANICAL PROPERTIES OF SOLIDS

(1 mark questions)

1.	•	the most plastic materi	al is			
	(a) iron	(b) wood	(c) rubber	(d) plasticine		
2.	Substances which car	be stretched to cause	large strains are called			
	(a) isomers	(b) plastomers	(c) elastomers	(d) polymers		
3.	In which year did Ro	bert Hooke presented l	nis law of elasticity?			
	(a) 1672	(b) 1674	(c) 1676	(d) 1678		
4.	Fluids can develop					
	(a) longitudinal strain(c) longitudinal, shear	•	(b) longitudinal and s rain (d) volumetric stra	· ·		
5.			chairlift at a ski area. It the cable can support i	f the maximum stress is		
	(a) $4\pi \times 10^5 \text{N}$	(b) $4\pi \times 10^4 \text{N}$	(c) $2\pi \times 10^5 \text{N}$	(d) $2\pi \times 10^4 \text{N}$		
6.	Stress is a qu	antity.				
	(a) scalar	(b) vector	(c) tensor	(d) dimensionless		
7.	Stress and pressure a from pressure?	re both force per unit	area. Then in what re	espect does stress differ		
				-		
8.		remains constant for formation made is ver		nat will be the effect on		
	<u> </u>					
	7					

9. Within elastic limit, which of the following graphs correctly represents the variation of extension in the length of a wire with the external load?

18. What is elastic fatigue?

19. What do you mean by 'permanent set' in a body?

- 20. For a perfectly rigid body
 - (a) Young's modulus is infinite and bulk modulus is zero.
 - (b) Young's modulus is zero and bulk modulus is infinite.
 - (c) Young's modulus is infinite and bulk modulus is also infinite.
 - (d) Young's modulus is zero and bulk modulus is also zero.
- 21. The ratio of shearing stress to the shearing strain is define as
 - (a) Young's modulus (b) bulk modulus
- (c) shear modulus
- (d) compressibility

- 22. For an ideal liquid
 - (a) bulk modulus is infinite and shear modulus is zero
 - (b) bulk modulus is zero and shear modulus is infinite
 - (c) bulk modulus is infinite and shear modulus is also infinite
 - (d) bulk modulus is zero and shear modulus is also zero
- 23. Which is more elastic rubber of copper?

24. Define compressibility of a material.

What does the slop	pe of stress versus s	strain graph give?	
Write dimensionle	ess formula of You	ng's modulus.	
What is the value of	of bulk modulus fo	r an incompressible liq	uid?
	lastic modulus of a		force is proportional to
Why steel is more	elastic than rubber	?	
A beam of metal scentre is proportio	supported at the two	o ends is loaded at the	centre. The depression a
A beam of metal scentre is proportio (a) Y ²	supported at the tw	o ends is loaded at the	centre. The depression a
A beam of metal scentre is proportio (a) Y ² Why are bridges d	supported at the two	o ends is loaded at the (c) 1/Y ar a long use?	

(2 m	arks Questions)
34.	What is perfectly elastic body? Give an example in which is close to perfectly elastic.
35.	Define modulus of elasticity. Name its three components.
36.	When the tension in a metal wire is T_1 , its length is l_1 . When the tension is T_2 , its length is l_2 . Find the natural length of wire.
37.	A square lead slab of side 50cm and thickness 5.0cm is subjected to a shearing force (on its narrow face) of magnitude 9.0×10^4 N. The lower edge is riverted to the floor. How much is the upper edge displaced if the shear modulus of the lead is 5.6×10^9 N/m?
38.	A wire of length l, area of cross section A and Young's modulus Y is stretched by an amount x. What is the work done in stretching the wire?
39.	Determine the volume contraction of a solid copper cube, 10cm on an edge, when subjected to a hydraulic pressure of 7.0×10^6 Pa. (Bulk modulus of Cu = 140510^9 Pa).

_	llues for an elastic material: Young's modulus = 7×10^{10} N r. Calculate the Poisson's ratio of the material.
How is the knowledge mountain on earth?	e of elasticity be used to estimate the maximum heigh
	sticity of rubber is greater than that of steel. coil is determined by its shear modulus.
	ng a rectangular cross-section of 15.2 mm \times 19.1 mm is purforce producing only elastic deformation. Calculate the re [Ans. 0.001277]
	dius 1.5cm supports a chairlift at a ski area. If the maximum n^2 , what is the maximum load the cable can support?
	[Ans. 7.07×10^4

Compute the bulk modulus of bulk modulus of water from the following data: In volume = 100.0 litre, pressure increase = 100.0 atm, final volume = 100.5 litre (1 at 1.013×10^5 Pa) [Ans. 2.023×10^9 P
What is the density of ocean water at a depth where the pressure is 80.0 atm, given its density of surface is 1.03×10^3 kgm ⁻³ ? Compressibility of water = 45.8×10^{-11} I Given an atm = 1.013×10^5 Pa. [Ans. 1.034×10^3 kgm ⁻³]
Compute the fractional change in volume of a glass slab, when subjected to a hydra pressure of 10 atm. [Ans. 2.74×10 ⁻⁵]
Determine the volume contraction of a solid copper cube, 10 cm on an edge, we subjected to hydraulic pressure of 7.0×10^6 Pa. [Ans. 0.05 cm ³]

ma	arks Questions)
	In the diagram a graph between the intermolecular force F acting between the molecules of a solid and the distance r between them is shown. Explain the graph. $(Repulsion) \qquad \qquad (Repulsion) $
	Define the term strain. Why it has no units and dimensions? What are different types o strain?
i.	Define the term stress. Give its units and dimensions. Describe the different types of

On the ba	sis of stress-strain curves, distinguish between ductile and brittle material
	10
Define Po	oisson's ratio. Write an expression for it. What is the significance of n
	s expression?
(a) What i	s elastic potential energy?
	e an expression for the elastic potential energy stored in a stretched wire
(c) Prove	that elastic energy density is equal to $\frac{1}{2} \times \text{stress} \times \text{strain}$.
A	

57. A wire of area of cross section 3.0 mm², and natural length 50cm, is fixed at one end and a mass of 2.1kg is hung from the other end. Determine the elastic potential energy stored

	410
A	box shaped piece of gelatin dessert has a top area of 15cm ² and a height of 3cm.
	shearing force of 0.50N is applied to the upper surface, the upper surface disp
	am relative to the bottom surface. What are the shearing stress, shearing strain an
she	ear modulus for the gelatin?
Α :	structural steel rod has a radius of 10mm and a length 1m. A 100kN force F stretc
	ong the length. Calculate (a) the stress (b) elongation, and (c) strain on the rod. (
	at the Young's modulus of the structural steel is $2.0 \times 10^{11} \text{ Nm}^{-2}$.
	452
_	
X-	
7	
	the normal density of sea water is 1.00 g cm ⁻³ , what will be its density at a dep

to o	eel wire has length 2m, radius 1mm and $Y = 2 \times 10^{11}$ N/m ² . A 1kg sphere is attane end of the wire and whirled in a vertical circle with an angular velocity lutions per second. What is the elongation of the wire when the sphere is a
	est point of the vertical circle?
	able is replaced by another cable of the same length and material but of hanceter.
(b) I	How does this affect its elongation under a given load? How many times will be the maximum load it can now support without exceedir ic limit?
4	

63. A steel wire of length 21 and cross section area A is stretched within elastic limit as shown in figure. Calculate the strain in the wire.

Define s	shear modulus. With the help of a diagram, explain how shear modulus caned.
A steel	wire of length 4.7m and cross section area 3.0×10 ⁻⁵ m ² stretches by the s
amount	wire of length 4.7m and cross section area 3.0×10^{-5} m ² stretches by the sas a copper wire of length 3.5m and cross sectional area of 4.0×10^{-5} m ² und ad. What is the ratio of the Young's modulus of steel to that of copper?
amount	as a copper wire of length 3.5m and cross sectional area of 4.0×10^{-5} m ² und
amount	as a copper wire of length 3.5m and cross sectional area of 4.0×10^{-5} m ² und
amount	as a copper wire of length 3.5m and cross sectional area of 4.0×10^{-5} m ² und
amount	as a copper wire of length 3.5m and cross sectional area of 4.0×10^{-5} m ² und
amount given los	as a copper wire of length 3.5m and cross sectional area of 4.0×10^{-5} m ² und

	(b) What is the density of water at a depth where pressure is 80.0 atm, given the density at the surface is 1.03×10^3 kg m ⁻³ ? Compressibility of water is 45.8×10^{-11} Pa
68.	A steel wire of length 4.7m and cross-section 3.0×10 ⁻⁵ m ² stretches by the same a
	as a copper wire of length 3.5m and cross-section 4.0×10^{-5} m ² under a given load. V
	the ratio of the Young's modulus of steel to that of copper? [Ans. 1.79]
69	Figure shows the stress-strain curve for a given material. What are (a) Young's m
69.	(b) approximate yield strength for the material? [Ans. $7.5 \times 10^{10} \text{ N/m}^2$, $3 \times 10^8 \text{ N/m}^2$
69.	
69.	
69.	300
69.	
69.	
69.	E 250 250 200 3 150 3 150 3 100
69.	

70.	The stress-strain graphs for materials A and B are shown in figure.		
	A Strain Strain		
	The graphs are drawn to the same scale		
	(a) Which of the material has greater Young's modulus?		
	(b) Which material is more ductile?		
	(c) Which is more brittle?(d) Which of the two is stronger material?		
	(d) Which of the two is stronger material:		
71.	The edge of an aluminium cube is 10cm long. One face of the cube is firmly fixed		
/1.	The edge of an aluminium cube is 10cm long. One face of the cube is firmly fixed vertical wall. A mass of 100kg is then attached to the opposite face of the cube. The s		
	modulus of aluminium is 25 G Pa. What is the vertical deflection of this face? (1Pa		
	n/m^2) [Ans. 4×10^{-7} m]		
	<u> </u>		
	/		

column. The Young's modulus of steel is 2.0×10^{11} Pa.	[Ans. 2.8×1
	
	
A 14.5 kg mass, fastened to the end of the steel wire o	f unstratched langth 1 (
A 14.3 kg mass, fastened to the end of the steel whe o	i unsuetched length i.t
	1 1 1 1 1 01
whirled in a vertical circle with an angular velocity of 2 lev	
whirled in a vertical circle with an angular velocity of 2 lev	
whirled in a vertical circle with an angular velocity of 2 lev. The cross-sectional area of the wire is 0.005 cm ² . Calculate	ate the elongation of the
whirled in a vertical circle with an angular velocity of 2 lev. The cross-sectional area of the wire is 0.005 cm ² . Calculate	ate the elongation of the
whirled in a vertical circle with an angular velocity of 2 lev. The cross-sectional area of the wire is 0.005 cm ² . Calculate	ate the elongation of the
whirled in a vertical circle with an angular velocity of 2 lev. The cross-sectional area of the wire is 0.005 cm ² . Calculate	ate the elongation of the
whirled in a vertical circle with an angular velocity of 2 lev. The cross-sectional area of the wire is 0.005 cm ² . Calculate	ate the elongation of the
whirled in a vertical circle with an angular velocity of 2 lev. The cross-sectional area of the wire is 0.005 cm ² . Calculate	ate the elongation of the
whirled in a vertical circle with an angular velocity of 2 lev. The cross-sectional area of the wire is 0.005 cm ² . Calculate	ate the elongation of the
whirled in a vertical circle with an angular velocity of 2 lev. The cross-sectional area of the wire is 0.005 cm ² . Calculate	ate the elongation of the
whirled in a vertical circle with an angular velocity of 2 lev. The cross-sectional area of the wire is 0.005 cm ² . Calculate	ate the elongation of the
whirled in a vertical circle with an angular velocity of 2 lev The cross-sectional area of the wire is 0.005 cm². Calcula when the mass is at the lowest point of its path.	[Ans. 1.87×10 ⁻³ 1
whirled in a vertical circle with an angular velocity of 2 lev. The cross-sectional area of the wire is 0.005 cm ² . Calculate	[Ans. 1.87×10 ⁻³ r

Compared to the control of the contr
A mild steel wire of length 1.0m and cross-sectional area 0.50×10^{-2} cm ² is stretched, we within its elastic limit, horizontally between two pillars. A mass of 100 g is suspende from the mid-point of wire. Calculate the depression at the mid-point.
[Ans. 1.07 cm
Two strips of metal are riverted together at their ends of four rivets, each of diameter 6.
mm. What is the maximum tension that can be exerted by the riverted strip if the shearin stress on the rivet is not to exceed 2.3×10^9 Pa? Assume that each rivet is to carry on
quarter of the load. [Ans. 260 kN

benear 1.1×1	th the surface 0^8 Pa. A steel	e of water. The ball of initial vo	water pressur plume 0.32m ³ i	e at the bottoms dropped into	m of the trench is a the ocean and falls to thes to the bottom? [Ans. 2.02×10 ⁻⁴ m
					4.0
)
arks Qu	estions)		• ^ \		
	J 1		iouna to may	e stress strain	curves as shown in
figure	;. ↑	_	Tourid to may	e stress strain	curves as shown in
figure	Stress		Stress	e stress strain	curves as shown in
figure	†			e stress strain	curves as shown in
figure	†	Strain		Strain	curves as shown in
	Stress (0, 0)		Stress (0,0)	Strain	
(a) In	Stress (0, 0)	icant ways do th	Stress (0,0)	Strain	ure differ from the s
(a) In strain (b) A	Stress (0, 0) which significurve of a meheavy machin	icant ways do the etal wire? ne is to be installe	Stress ${(0,0)}$ hese curves showed in a factory	Strain own in the figure. To absorb var	ure differ from the s
(a) In strain (b) A block	Stress (0, 0) which significant curve of a metheavy machine of rubber is p	icant ways do the etal wire? ne is to be installed blaced between the	Stress (0,0) nese curves she ed in a factory ne machinery a	Strain own in the figure. To absorb varied the floor. V	ure differ from the s
(a) In strain (b) A block A and	Stress (0, 0) which significant curve of a metheavy machine of rubber is placed by the bound of the bound o	icant ways do the etal wire? ne is to be installed placed between the prefer to use for	Stress (0,0) hese curves she ed in a factory he machinery a this purpose?	Strain Strain To absorb value the floor. Why?	ure differ from the s riations fo the machin Vhich of these two ru
(a) In strain (b) A block A and	Stress (0, 0) which significantly of a metheavy machine of rubber is placed by the bound of th	icant ways do the etal wire? ne is to be installed blaced between the	Stress (0,0) hese curves showed in a factory are machinery are this purpose?	Strain Strain To absorb value the floor. Why?	ure differ from the s riations fo the machin Vhich of these two ru
(a) In strain (b) A block A and	Stress (0, 0) which significantly of a metheavy machine of rubber is placed by the bound of th	icant ways do the etal wire? ne is to be installed placed between the prefer to use for	Stress (0,0) hese curves showed in a factory are machinery are this purpose?	Strain Strain To absorb value the floor. Why?	ure differ from the s riations fo the machin Vhich of these two ru
(a) In strain (b) A block A and	Stress (0, 0) which significantly of a metheavy machine of rubber is placed by the bound of th	icant ways do the etal wire? ne is to be installed placed between the prefer to use for	Stress (0,0) hese curves showed in a factory are machinery are this purpose?	Strain Strain To absorb value the floor. Why?	ure differ from the s riations fo the machin Vhich of these two ru

(a) Describe elastic hysteresis. Mention its two applications. (b) What is elastic after effect?		
(b) What is elastic after effect?		
(b) What is elastic after effect?		
(b) What is elastic after effect?		
(b) What is elastic after effect?		
(b) What is elastic after effect?		
	(b) What i	s elastic after effect?

81. A rod of length 1.05m having negligible mass is supported at its ends by two wires of steel (wire A) and aluminium (wire B) of equal lengths as shown in figure. The cross section areas of wires A and B are 1.0 mm² and 2.0 mm² respectively. At what point along the rod should a mass m be suspended in order to produce (a) equal stresses and (b) equal strains in both steel and aluminium wires?

 <u>A</u>
,6/2/

82. Two wires of diameter 0.25cm, one made of steel and the other of brass are loaded as shown in figure. The unloaded length of steel wire is 1.5m and that of brass wire is 1.0m. Compute the elongations of the steel and the brass wire.

	-		stress on the wire, (ii	i) If Y
Young's modul	is of the wire, then f	ind the value of x.		
		1	<u> </u>	
		1		
	G			
(a) Evalain why	y should the beams	used in the constru	ction of bridges have	lorgo
and small bread		ased in the constitu	ction of bridges have	range
(b) Why are gird	lers given I shape?			
) 				

Physics with