CLASS – 11

WORKSHEET- THERMAL PROPERTIES OF MATTER

(1 mark questions)

1.	What is heat?			
2.	What are the Si and C	GS units of heat? Ho	w are they related?	
3.	What is thermometry	?		
1.	Define temperature.			
5.	State the principles of	f thermometer.		
ó .	What is temperature size is equal to that of			te scale whose unit interval
7.	There is a hole in the	middle of a copper r	late When heating	the plate, diameter of hole
	would	initiality of a copper p	nate. When heating	, the place, diameter of hore
	(a) always increase		(b) always decrea	ise
	(c) remains same		(d) none of these	
	If α , β and γ are coethen:	efficients of linear, su	perficial and volu	me expansion respectively,
		(b) $\frac{\beta}{\gamma} = \frac{2}{3}$	(c) $\frac{\gamma}{\alpha} = \frac{3}{2}$	(d) $\frac{\beta}{\alpha} = \frac{\gamma}{\beta}$

9. Why iron rims are heated red hot before being put on cart wheels?

For a perfectly bla (a) 1	ck body, its absorptive (b) 0.5	power is (c) 0	(d) infinity
(a) 1	(0) 0.3	(c) 0	(d) illility
	's constant in SI system	will be	
(a) Joule/m ² s	(b) Joule/m ² sK ⁴	(c) Joule/msK ⁴	(d) Joule/m ² K ²
Animals curl into	a ball, when they feel v	ery cold why?	
-	of a blackbody is incr		1000K, by what fa
-	of a blackbody is incr f energy from it change		1000K, by what fa
-			1000K, by what fa
-			1000K, by what fa
rate of emission o	f energy from it change	s?	
Pieces of copper	f energy from it change and glass are heated to	s?	
rate of emission o	f energy from it change and glass are heated to	s?	
Pieces of copper	f energy from it change and glass are heated to	s?	
Pieces of copper copper feel hotter	and glass are heated to on touching?	o the same temperatur	
Pieces of copper copper feel hotter	f energy from it change and glass are heated to	o the same temperatur	
Pieces of copper copper feel hotter	and glass are heated to on touching?	o the same temperatur	
Pieces of copper copper feel hotter Why it is much ho	and glass are heated to on touching?	y its side?	
Pieces of copper copper feel hotter Why it is much ho	and glass are heated to on touching?	y its side?	

(2 m	arks Questions)
19.	Distinguish clearly between heat and temperature.
20.	Why is mercury used in thermometer?
21.	An object has a temperature of 50°E. What is the temperature in degrees Celsius and in Kelvin?
22.	What do you mean by triple point of water? Why is it unique?
23.	Two absolute scales A and B have triple point of water defined to be 200A and 350B. What is the relation between T_A and T_B ?
24.	A thin rod having L_0 of 0°C and coefficient of linear expansion α has its two ends maintained at temperatures θ_1 and θ_2 respectively. Find its new length.

Chave that the aget	Figient of area expensions (AA/A)/AT of a material archeol
	ficient of area expansions, $(\Delta A/A)/\Delta T$, of a rectangular sheet ear expansivity, α_1 .
resultant temperatu	C is mixed with a 0.30kg of water at 50° C in a container. For real content is the container of the container of the content is 3.35×10^{5} J/kg and 3.35×10^{5} J/kg Alpha Al
•	_
resultant temperatu	_
resultant temperatur 4200 j kg ⁻¹ K ⁻¹ .	re. Given the Latent heat of fusion of ice = 3.35×10^5 J/kg and curves between wavelength λ and intensity of radiation E λ
resultant temperatur 4200 j kg ⁻¹ K ⁻¹ .	re. Given the Latent heat of fusion of ice = 3.35×10^5 J/kg and
resultant temperatur 4200 j kg ⁻¹ K ⁻¹ .	re. Given the Latent heat of fusion of ice = 3.35×10^5 J/kg and curves between wavelength λ and intensity of radiation E λ

30. Two rods A and B of different materials are welded together as shown in the figure. Their thermal conductivities are K_1 and K_2 . Find the thermal conductivity of the composite rod.

31. The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales.

32. The coefficient of volume expansion of glycerin is 49×10^{-5} ° C⁻¹. What is the fractional change in its density for a 30°C rise in temperature? [Ans. 0.0147]

mutually perpendicular directions in the solid, what is the coefficient of volu expansion for the solid?
expansion α) about its perpendicular bisector when its temperature is slightly increasely ΔT .
The coefficient of realisms arranging of almosting is 40×10-50C-1. What is the fraction
The coefficient of volume expansion of glycerine is 49×10 ⁻⁵ °C ⁻¹ . What is the fraction change in its density for a 30°C rise in temperature?
· · · · · · · · · · · · · · · · · · ·

36. A brass wire 1.8m long at 27°C is held taut with little tension between two rigid supports. If the wire is cooled to a temperature of -39°C, what is the tension developed in the wire, if its diameter is 2.0mm? Coefficient of linear expansion of brass = 2.0×10^{-5} K⁻¹, Young's modulus of brass = 0.91×10^{11} Pa.

A copper blo	ock of mass 2.5kg is heated in a furnace to a temperature of 500°C and
_	arge ice block. What is the maximum amount of ice that can melt? (Spectral $g = 0.39 J g^{-1} {}^{\circ}C^{-1}$, heat of fusion of water = 335 $J g^{-1}$).
_	t – 20°C is mixed with 5kg of water at 20°C in an insulating vessel hav
negligible he	t – 20°C is mixed with 5kg of water at 20°C in an insulating vessel hav at capacity. Calculate the final mass of water remaining in the container especific heats of water and the ice are 1 kcal/kg°C and 0.5 kcal/kg°C at of fusion of ice is 80 kcal/kg.
negligible he	at capacity. Calculate the final mass of water remaining in the container e specific heats of water and the ice are 1 kcal/kg°C and 0.5 kcal/kg°C v
negligible he	at capacity. Calculate the final mass of water remaining in the container e specific heats of water and the ice are 1 kcal/kg°C and 0.5 kcal/kg°C v
negligible he	at capacity. Calculate the final mass of water remaining in the container e specific heats of water and the ice are 1 kcal/kg°C and 0.5 kcal/kg°C v

	etween three modes of heat transmission.	
A more £:11 - 1	with het food cools from 04°C to 96°C in 2 minutes	an 41-
=	I with hot food cools from 94°C to 86°C in 2 minutes, who is 20°C, How long will it take to cool from 70°C to 69°C?	en tn
	is 20°C, flow long with it take to cool from 70°C to 05°C.	
A body cools	s in 7 minutes from 60°C to 40°C. What will be the temperature	e of tl
	minutes? The temperature of the surroundings is 10°C.	
	w of cooling holds good throughout the process.	
\vee		
		

		[Ans. 38
Two ideal gas them	nometers A and B use oxyg	en and hydrogen respectively
following observation		
· ·	Pressure (thermometer A)	Pressure (thermometer I
Triple point of water	1.250×10 ⁵ Pa	$0.200 \times 10^5 \text{ Pa}$
Normal melting	$1.797 \times 10^5 \text{Pa}$	$0.287 \times 10^{5} \text{ Pa}$
Point of sulphur		1
(-) W/14 !- 411	1	1()
	olute temperature of normal r	neiting point of sulphur as re
thermometers A and	B?	
thermometers A and	-	
thermometers A and	B? k us the reason for slightly diffe	erent answers from A and B?
thermometers A and	B? k us the reason for slightly diffe	erent answers from A and B?
thermometers A and	B? k us the reason for slightly diffe	erent answers from A and B?
thermometers A and	B? k us the reason for slightly diffe	erent answers from A and B?
thermometers A and	B? k us the reason for slightly diffe	
thermometers A and	B? k us the reason for slightly diffe	erent answers from A and B?
thermometers A and	B? k us the reason for slightly diffe	erent answers from A and B?
thermometers A and	B? k us the reason for slightly diffe	erent answers from A and B?
thermometers A and	B? k us the reason for slightly diffe	erent answers from A and B?
thermometers A and (b) What do you think	B? k us the reason for slightly diffe	erent answers from A and B? [Ans. (a) (i)392.46K (ii) 391.75
thermometers A and (b) What do you think A steel tape 1m long	B? k us the reason for slightly difference to the state of the state o	erent answers from A and B? [Ans. (a) (i)392.46K (ii) 391.75
A steel tape 1m long steel rod measured by	is correctly calibrated for a tery this tape is found to be 63.0 c	mperature of 27.0°C. The lengt m on a hot day when the temper
A steel tape 1m long steel rod measured by is 45.0°C. What is the	is correctly calibrated for a tery this tape is found to be 63.0 ce actual length of the steel rod of	erent answers from A and B? [Ans. (a) (i)392.46K (ii) 391.75 mperature of 27.0°C. The lengt m on a hot day when the temper on that day? What is the length
A steel tape 1m long steel rod measured by is 45.0°C. What is the same steel rod on a decomposition of the same steel rod on a decomposition.	is correctly calibrated for a tery this tape is found to be 63.0 ce actual length of the steel rod of lay when the temperature is 27.	mperature of 27.0°C. The length on that day? What is the length 0°C? Coefficient of linear expansion.
A steel tape 1m long steel rod measured by is 45.0°C. What is the	is correctly calibrated for a tery this tape is found to be 63.0 ce actual length of the steel rod of lay when the temperature is 27.	erent answers from A and B? [Ans. (a) (i)392.46K (ii) 391.75 mperature of 27.0°C. The lengt m on a hot day when the temper on that day? What is the length
A steel tape 1m long steel rod measured by is 45.0°C. What is the same steel rod on a decomposition of the same steel rod on a decomposition.	is correctly calibrated for a tery this tape is found to be 63.0 ce actual length of the steel rod of lay when the temperature is 27.	mperature of 27.0°C. The lengt m on a hot day when the temper on that day? What is the length 0°C? Coefficient of linear expansion.

C	A large steel rod is to be fitted on to a shaft of the same material. At 27°C the outed diameter of the shaft is 8.70 cm and the diameter of the central hole in the wheel is 8.69cm. The shaft is cooled using 'dry ice' (solid carbon dioxide). At what temperature
(of the shaft does the wheel slip on the shaft? Assume coefficient of linear expansion of the steel to be constant over the required temperature range. [Ans. – 68.8°C]
-	
-	
-	
-	
-	
t	A hole is drilled in a copper sheet. The diameter of the hole is 4.24 cm at 27.0°C. What is the change in the diameter of the hole when the sheet is heated to 227 °C? Coefficient of the linear expansion of copper = 170×10^{-5} °C ⁻¹ ? [Ans. 1.44×10^{-2} cm]
-	
-	
-	
-	
-	
	A brass wire 1.8m long at 27°C is held taut with little tension between two rigid supports of the wire is pooled to a temperature of 20°C, what is the tension developed in the
	If the wire is cooled to a temperature of -39° C, what is the tension developed in the wire, if its diameter is 2.0mm? Coefficient of linear expansion of brass = 2.0×10^{-5} °C
	Young's modulus of brass = 0.91×10^{11} Pa. [Ans. 3.77×10^{2} N]
_	
-	
-	
-	

A brass rod of length 50cm and diameter 3.0 mm is joined to a steel rod of the same length and diameter. What is the change in length of the combined rod at 250°C, if the original lengths are at 40°C? Is there a 'thermal stress' developed at the junction? The ends of the rod are free to expand. Coefficient of linear expansion of brass = 2.0×10^{-5} ° C
1 and that of steel=1.2×10 ⁻⁵ ° C ⁻¹ . [Ans. 0.34 cm]
A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8.0 kg. How much is the rise in temperature of the block in 2.5 minutes, assuming 50% of power is used up in heating the machine itself or lost to the surroundings. Specific heat of aluminium = $0.91 \text{ Jg}^{-1} \text{ C}^{-1}$. [Ans. 103.02°C]
A copper block of mass 2.5 kg is heated in a furnace to a temperature of 500° C and then placed on a large ice block. What is the maximum amount of ice that can melt? (Specific heat of copper = $0.39 \text{ Jg}^{-1} \text{ C}^{-1}$, and heat of fusion of water = 335 Jg^{-1}). [Ans. 1.455 kg]

	[Ans. 0.1 cal g ⁻¹ C ⁰	—
	vations on molar specific heats at room temperatur	e of
common gases		
Gas	Molar specific heat (C _V) (cal mol ⁻¹ K ⁻¹)	
Hydrogen	4.87	
Nitrogen	4.97	
Oxygen	5.02	
Nitric oxide	4.99	
Carbon monoxide	5.01	
Chlorine	6.17	
monoatomic gases [Typi	cific heats of these gases are markedly different from ically molar specific heat of a monoatomic gas is 2. ice. What can you infer from the somewhat larger (the	92 c
value for chlorine?	se. What can you mer from the somewhat larger (the	tii ti
TUTA		

fever is brought down to 98°F in 20 min, what is the average rate of extra evaporation caused by the drug? Assume the evaporation mechanism to be the only way by which heat is lost. The mass of the child is 30kg. The specific heat of human body is

temperature is about 580 cal g ⁻¹ .	[Ans. 4.31 g m
A (41	4. 1. 1
A 'thermocole' carbicoal icebox of side 30cm h	
are put in the box, estimate the amount of ice ren	_
is 45°C and coefficient of thermal conductivity	of thermocle = $0.01 \text{ Js}^{-1} \text{ m}^{-1} \circ \text{ C}^{-1}$
heat of fusion of water = 335×10^3 Jkg ⁻¹ .	[Ans. 3.687 kg]
	
A brass boiler has a base area of $0.15\ m^2$ and th	ickness 1.0cm.It boils water at a
of 6.0 kg min ⁻¹ , when placed on a glass stove. E	
flame in contact with the boiler. Thermal conduc	etivity of brass = $109 \text{ Js}^{-1} \text{ m}^{-1} \text{ C}^{-1} \text{ a}$
of vaporization of water = 2256 Jg^{-1} .	[Ans. 238°C]

(5 marks Questions)

57. Describe the principle, construction and working of a constant volume gas thermometer. Give its two advantages over mercury thermometer.

-					
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	t.
(a) Explain the (b) State Newt	e terms specific he on's law of coolir	at and heat cap	acity. nematical exp	ression for it	t.
(a) Explain the (b) State Newt	e terms specific he on's law of coolir	at and heat cap	acity. nematical exp	ression for it	i.
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	t.
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	t.
(a) Explain the (b) State Newt	e terms specific he on's law of coolir	at and heat cap	acity. nematical exp	ression for it	t.
(a) Explain the (b) State Newt	e terms specific he on's law of coolir	at and heat cap	acity. nematical exp	ression for it	i.
(a) Explain the (b) State Newt	e terms specific he on's law of coolir	at and heat cap	acity. nematical exp	ression for it	
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	i.
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	i.
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	i.
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity.	ression for it	i.
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity.	ression for it	
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity.	ression for it	
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity.	ression for it	
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity.	ression for it	
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity.	ression for it	
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	
(a) Explain the (b) State Newt	e terms specific he	at and heat cap	acity. nematical exp	ression for it	

59. Answer the following:

(a) The triple point of water is a standard fixed in modern thermometry. Why? What is wrong in taking the melting point of ice and the boiling water as standard fixed points (as was originally done in Celsius scale)?

(b) There were two fixed points in the original Celsius scale as mentioned above which were assigned the number 0°C and 100°C respectively. On the absolute scale, one of the fixed points is the triple point of water, which on the Kelvin absolute scale is assigned the number 273.16 K. What is the other fixed point on this (Kelvin) scale?

(c) The absolute temperature (Kelvin scale) T is related to the temperature t_c on the Celsius scale by $t_c = T - 273.15$. Why do we have 273.15 in this relation, and not 273.16?

(d) What is the temperature of the triple point of water on an absolute scale whose unit interval size is equal to that of the Fahrenheit scale?

60. Answer the following questions based on the P-T phase diagram of carbon dioxide as shown in figure.

	wer the following question based on the P-T phase diagram of CO ₂ :
	CO ₂ at 1atm pressure and temperature – 60°C compressed isothermally. Doe
	ugh the liquid phase? What happens when CO ₂ at 4atm pressure is cooled from room temperat
	stant pressure?
(c)]	Describe qualitatively the changes in a given mass of solid CO ₂ at 10atm. pr
	temperature -65°C as it is heated up to room temperature at constant pressure.
	CO ₂ is heated to a temperature 70†8C and compressed isothermally. What char
ıts p	roperties do you expect to observe?

Explain why:				
- •	arge reflectivity is a	noor emitter		
•	ler feels much colde	•	en trav on a ch	illy day.
			•	brated for an ideal b
			•	red hot iron piece in
•			•	e piece is in the furna
	hout its atmosphere	•		
	•			efficient in warmin
	ose based on circula			
yanang aran ar				

62.