CLASS - 11

WORKSHEET- THERMODYNAMICS

(1 mark questions)

	e in thermal equilibrium e in thermal equilibrium		in thermal equilibrium are in thermal equilibrium	
What does the an object?	zeroth law of thermodyna	mics tell us about 1	measuring the temperatur	
Which one of (a) pressure	the following is not a therm (b) temperature	nodynamic variable (c) volume	? (d) none of these	
If no external energy is supplied to an expanding gas, will the gas do any work? If y then what will be the source of energy?				
Which of the	following is not a path func	tion?		
(a) ΔQ	(b) $\Delta Q + \Delta W$	(c) ΔW	(d) ΔQ - ΔW	
_	thermal expansion, a conf This implies that	ined ideal gas does	s – 150J of work agains	
(a) 150 J of he	at has been removed from t	_		
	at has been added to the gas			
	ransferred because the proc at has been added to the gas			
	_	,		
State first law	of thermodynamics.			
		forbid flow of boo	t from lower temperatur	

9.	When is the heat supplied to a system equal to the increase in its internal energy?
10.	In an adiabatic change the specific heat of a gas is (a) increase with increase in temperature (b) decrease with increase in temperature (c) not depend upon change in temperature (d) always zero
11.	An ideal gas having molar specific heat capacity at constant volume is 3/2R, the mospecific heat capacities at constant pressure is
12.	(a) 1/2R (b) 5/2R (c) 7/2R (d) 9/2R Define thermodynamic system.
13.	What is equation of state?
14.	What are extensive state variables?
15.	Which of the following process is correct for given P-V diagram?
	(a) Adiabatic process (b) isothermal process (c) Isobaric process (d) Isochoric process
16.	One mole of an ideal gas undergoes a cyclic process ABCD, A as shown in the diagram. The net work done in the process is $(1 \text{ atm} = 10^6 \text{ dyne cm}^{-2})$ (a) 500J (b) 700J (c) 800J (d) 900J
17.	A given system undergoes a change in which the work done by the system equals decrease in its internal energy. What kind of thermodynamic process does the systundergoes?

-	ideal monatomic gas is ta e work done during the cy	aken round the cycle ABCA as shown rcle? B (4P, 3V) C (P, 3V)	in th
Can two isothern	nal curves intersect?		
Can we convert i	nternal energy into work?		
If hot air rises up	, why is it cooler at the top	o of mountain than near the sea level? Ex	plain
Why a gas is coo	led when expanded?		
What is isobaric	process?		
What is isochoric	process?		
A heat engine ha	s an efficiency η. Tempera	atures of source and sink are each decrea	sed b

26.	When the door of a re	efrigerator is kept of	•	mperature starts
	(a) cool down	1.1 1 .	(b) hot up	1 1 .
	(c) first cool down an	d then hot up	(d) neither cool	down nor hot up
27.	Give two examples o	f heat pump.		
28.	State second law of the	hermodynamics.		
29.	The conclusion of sec (a) no heat engine can		•	
	(b) no heat engine car	n have efficiency η	equal to one.	
	(c) no heat engine can	n have efficiency η	greater than one.	
	(d) no heat engine can	n have efficiency η	less than one.	
30.	When the door of refi		en we cannot cool the (b) first law of the	e room. It may be against nermodynamics
	(c) conservation of m	omentum	(d) second law o	f thermodynamics
31.	at a higher temperatu	ontainer at a temper re T ₂ which increase enclosed in a pistor	rod by hammering in ature T_1 is brought in the temperature of a cylinder arrangem	t. n contact with a big reservoir the gas. ent with adiabatic walls. A
32.		oducing 1.25kJ of n		mperature 750K and sink cycle, the heat transferred to (d) 4.34kJ
	(a) 1.34 KJ	(0) 2.34KJ	(C) 3.34KJ	(u) 4.34kJ
33.	A Carnot engine absorption of heat during each control of heat during each control of the contro		••	ir at 137°C and rejects 500J
	(a) 0.25°C	(b) 0.34°C	(c) 0.44°C	(d) 0.54°C
34.	What are two essentia	al features of Carno	t ideal heat engine?	

ma	arks Questions)
	Give difference between heat and work.
·.	What do you mean by internal energy of a system?
•	State the sign conventions used in the measurement of heat, work and internal energy.
	A system is given 200 calories of heat and it does 600 joules of work. How much does the internal energy of the system change in this process. (J = 4.18 joule/cal)?
١.	Two bodies at different temperatures T_1 and T_2 if brought in thermal contact do not necessarily settle to the mean temperature $(T_1 + T_2)/2$. Explain.
).	Which is greater C _P or C _V and why?

(ii)	at 50°C and 75cm of mercury pressure, a definite mass of gas is compressed (i) slow suddenly, then what will be the final pressure and temperature of the gas in each the final volume is one-fourth of the initial volume ($\gamma = 1.5$).
The	e slope of an adiabatic process is greater than an isothermal process. Give reason.
	ow that the slope of an adiabatic curve at any point is γ times the slope o thermal curve at the corresponding point.
Un	der what conditions would an ideal heat engine be cent per cent efficient?
	refrigerator maintains eatables, kept inside at 9°C. If the room temperature is 37.5 culate the coefficient of performance of the refrigerator.

No real engine can have an efficiency greater than that of a Carnot engine work between the same two temperatures. Give reason. Can a Carnot engine be realized in practice? Barks Questions) What is a system said to be in the state of thermodynamic equilibrium? Define internal energy of a gas. Explain whether it is an extensive or intensive variable How internal energy of a gas can be changed?		
Parks Questions) What is a system said to be in the state of thermodynamic equilibrium? Define internal energy of a gas. Explain whether it is an extensive or intensive variable.		
What is a system said to be in the state of thermodynamic equilibrium? Define internal energy of a gas. Explain whether it is an extensive or intensive variable.		Can a Carnot engine be realized in practice?
What is a system said to be in the state of thermodynamic equilibrium? Define internal energy of a gas. Explain whether it is an extensive or intensive variable.		
	18	orka Quagtiona)
		-
		-
		What is a system said to be in the state of thermodynamic equilibrium? Define internal energy of a gas. Explain whether it is an extensive or intensive variable.

	neat energy of 1500J is supplied to a gas at increase in its volume equal to 2.5×10^{-3} n	
Prove to	hat $C_P - C_V = R$ for ideal gas.	
	sh the relation between two principal speci	fic heats of a gas on the basis o

cylinder .	A contains a gas at standard temperature and pressure, while the cylinder B is
_	evacuated. The entire system is thermally insulated. The stopcock is suddenly answer the following:
	is the final pressure of the gas in A and B?
	is the change in internal energy of the gas?
	is the change in temperature of the gas?
	e intermediate states of the system (before settling to final equilibrium state) li 7-T surface?
	you mean by extensive and intensive state variables? Explain using suitable
	you mean by extensive and intensive state variables? Explain using suitable
	you mean by extensive and intensive state variables? Explain using suitables
	you mean by extensive and intensive state variables? Explain using suitables
	you mean by extensive and intensive state variables? Explain using suitable
	you mean by extensive and intensive state variables? Explain using suitable
write tw	you mean by extensive and intensive state variables? Explain using suitable of essential conditions for a perfect isothermal change and the two essentials for a perfect adiabatic change.
example.	o essential conditions for a perfect isothermal change and the two essentia
example.	o essential conditions for a perfect isothermal change and the two essentia

Consider one gram mole of an ideal gas of ratio of specific heats γ , enclosed in a cylinder with perfectly non conducting walls fitted with a smooth non conducting piston. Find a expression for work done by the gas when it expands such that its temperature change from T_1 to T_2 .
Ten moles of hydrogen at NTP is compressed adiabatically so that its temperature become 400°C. How much work is done on the gas? What is the increase in the internal energy of the gas ($R = 8.4 \text{ J mol}^{-1} \text{ K}^{-1}$, $\gamma = 1.4$)
Determine the PV relation for a monatomic gas undergoing an adiabatic process.
Determine the PV relation for a monatomic gas undergoing an adiabatic process.

63.	A refrigerator freezes water at 0°C into 10kg ice at 0°C in time interval of 30 m. Assuming the room temperature to be 20°C, calculate the minimum amount of powneeded to make 10kg of ice.
64.	What is Carnot engine? What is its efficiency?
65.	A steam engine works with reservoirs at temperatures of 207°C and 37°C while gasoline combustion engine has temperatures of 1550°C and 475°C. Which of the twengines is more efficient?

	eats water flowing at the rate of ates on a gas burner, what is t	-	
	is 4.0×10^4 J/g?	ne rate of consumption	[Ans. 15.75 g mi
		2.0.1021	
raise its ten	nt of heat must be supplied to apperature by 45°C at constant	pressure? Given mole	•
and $R = 8.3$	J mol $^{-1}$ K $^{-1}$ and C_V (diatomic §	gases) = 7/2 R.	[Ans. 933.75J]

(b) The coolant in a chemical or a nuclear plant (i.e. the liquid used to prevent the

different parts of a plant from getting too hot) should have high specific heat.

necessarily settle to mean temperature $(T_1 + T_2)/2$.

70.	A cylinder with a movable piston contains 3 moles of hydrogen at standard temperature
70.	and pressure. The walls of the cylinder are made of a heat insulator, and the piston is insulated by having a pile of sane on it. By what factor does the pressure of the gas increase if the gas is compressed to half its original volume? [Ans. 2.64]
71.	In changing the state of a gas adiabatically from an equilibrium state A to anothe equilibrium state B, an amount of work equal to 22.3J is done on the system. If the gas is taken from state A to B via process in which the net heat absorbed by the system is 9.35 cal, how much is the net work done by the system in the latter case? (take 1 cal = 4.19 J) [Ans. $+16.9$ J]

	[Ans. 3.1×10 ⁹ J]
	ater supplies heat to a system at a rate of 100W. If system performales per second, at what rate is the internal energy increasing? [Ansate of 100W.]
	mes per second, at what rate is the internal energy increasing? [Ans
A thermodynar	mic system is taken from an original; state to an intermediate sta
linear process s	shown in figure.
	600
	A CONTRACTOR OF THE CONTRACTOR
	NO F F F F F F F F F F F F F F F F F F F
	!
	$ \begin{array}{ccc} & & & & & & \\ 0 & & & & & & \\ \hline & & & & & & \\ & & & & & & \\ & & & & & &$

75.	A refrigerator is to maintain eatables kept inside at 9°C. If room temperature is 36°C calculate the coefficient of performance. [Ans. 10.4]
(5 ma	arks Questions)
76.	When a system is taken from state A to state B along the path ACB, 80 kcal of heat flow into the system and 30 kcal of work is done C B V - D
	(a) How much does heat flows into the system along path ADB if the work done it 10kcal?
	 (b) When the system is returned from B to A along the curved path the work done i 20kcal. Does the system absorb or liberate heat? (c) If U_A = 0 and U_D = 40kcal, find the heat absorbed in the process AD.

Describe melting and b	oiling process on t	he basis of first la	w of thermodynamic
For the case of an idea which the molar heat ca	apacity varies as:		
(a) $C = C_V + \alpha T$ ((c) $C = C_V + a$	P
Where α , β , a are const			
Where α, β, a are const			
Where α, β, a are const			

Consider a PV diagram in which the path followed by one mole of perfect gas in cylindrical container is shown in figure. $P = \frac{1(P_1, V_1, T_1)}{2(P_2, V_2, T_2)}$
$\overline{V_1}$ $\overline{V_2}$ \overline{V}
(a) Find the work done when the gas is taken from state 1 to state 2. (b) What is the ratio of temperature T_1/T_2 if $V_2 = 2V_1$? (c) Given the internal energy for one mole of gas at temperature T is $(3/2)RT$, find the heat supplied to the gas when it is taken from state 1 to state 2 with $V_2 = 2V_1$.

79.

80. A sample of 2kg of monatomic helium (assumed ideal) is taken through the process ABC and another sample of 2kg of the same gas is taken through the process ADC (figure). Given molecular mass of Helium = 4, $R = 8.3 \text{ j mol}^{-1} \text{ K}^{-1}$.

- (a) What is the temperature of Helium in each of the states of A, B, C and D?
- (b) How much is the heat involved in each of the process ABC and ADC?

- 81. A mixture of 1.78kg of water and 262g of ice at 0°C is in a reversible process, brought to a final equilibrium state where the water/ice ratio by mass is 1:1 at 0°C.
 - (i) Calculate the entropy change of the system during this process
 - (ii) The system is the returned to the first equilibrium state, but in an irreversible way (by using a Bunsen burner for instance). Calculate the entropy change of the system during this process.

_	
-	
-	
	a) Explain the basic principle of a heat engine. b) Can the efficiency of a heat engine be 100%? Give reason for your answer.
_	
_	
_	
_	
_	
_	
_	
-	
	A refrigerator whose coefficient of performance β is 5 extracts heat from the coordinate of the rate of 250J per cycle.
(1	a) How much work per cycle is required to operate the refrigerator cycle?b) How much heat per cycle is discharged to the room which acts as high temperateservoir?
-	
_	

State C	Carnot theorem. Prove that the efficiency of a reversible heat engine is maximu
Two cy	ylinders A and B of equal capacity are connected to each other via a stopcock
cylinde comple	er A contains a gas at standard temperature and pressure, while the cylinder etely evacuated. The entire system is thermally insulated. The stopcock is suddented to the stopcock is suddented.
cylinde comple opened	er A contains a gas at standard temperature and pressure, while the cylinder etely evacuated. The entire system is thermally insulated. The stopcock is suddent.
cylinde comple opened Answe	er A contains a gas at standard temperature and pressure, while the cylinder etely evacuated. The entire system is thermally insulated. The stopcock is suddented to the stopcock is suddented.
cylinder complete opened Answe (i) What	er A contains a gas at standard temperature and pressure, while the cylinder etely evacuated. The entire system is thermally insulated. The stopcock is suddent the following:
cylinder complete opened Answe (i) What (ii) What	er A contains a gas at standard temperature and pressure, while the cylinder etely evacuated. The entire system is thermally insulated. The stopcock is sudded. It the following: It is the final pressure of the gas in A and B?