CLASS - 11

WORKSHEET- WAVES

(1 mark questions)

	of longitudinal wave	s through a medium, th	e quantity transmitted is
(a) matter		(b) energy	
(c) matter and ene	rgy	(d) energy, matter	r and momentum
What is the evide	nce that (i) sound is	a wave (ii) sound is a	mechanical wave and (i
	ongitudinal waves?	a wave, (ii) sould is a	meentameur wave una (n
Why are the longi	tudinal waves also ca	lled pressure waves?	
winy are the longi		ned pressure waves:	
De disalessament	mantiala valasitus	l massauma vanistism im	a lancitudinal more ma
with the same pha		i pressure variation in	a longitudinal wave van
	5		
	()		
What is the direct	ion of oscillations of	the particles of the m	edium through which (i)
		-	edium through which (i)
	ion of oscillations of a longitudinal wave i	-	edium through which (i)
		-	edium through which (i)
transverse and (ii)	a longitudinal wave i	s propagating?	
transverse and (ii)	a longitudinal wave i	s propagating?	rmal to the shore. Why?
transverse and (ii)	a longitudinal wave i	s propagating?	
Ocean waves hitti	a longitudinal wave i	s propagating? found to be nearly nor	
Ocean waves hitti A progressive wave	a longitudinal wave i	s propagating? found to be nearly nor $= 5\sin (100\pi t - 2\pi x) v$	rmal to the shore. Why?

(a) wavelength(d) angular wave nu	(b) frequency	lso called its (c) wave number	r
between two particl		•	What is the phase difference at the distance between the
particles is 75m.			
Newton assumed the	at cound propagation	n in a gas takes under	
(a) isothermal condi		(b) adiabatic con	
(c) isobaric conditio		(d) isentropic co	
•, 1500 u 110 • 011 0 11010		(a) isomi spie os	
For v _{rms} is the rms s	speed of molecules i	in a gas and v is the	speed of sound waves in the
gas, then the ratio v_r	rms/v is		
$\sqrt{3}$	$\sqrt{\gamma}$	(c) $\sqrt{3\gamma}$	$\sqrt{3}$
(a) $\sqrt{\frac{3}{\gamma}}$	(b) $\sqrt{\frac{\gamma}{3}}$	(c) √3γ	(d) $\frac{\sqrt{3}}{\gamma}$
	4		
What kind of therm	modynamical proces	ss occur in air, when	n a sound wave propagates
through it?			
•			
State the factors on	which the speed of	f a wave travelling al	long a stretched ideal string
depends.	which the speed of	a a wave navening a	iong a stretched ideal string
arpanus.)		
	f pressure on the spe	ed of sound in air? Ju	stify your answer.
What is the effect of			
What is the effect of			
Intensities of two w	aves, which produce		. The ratio of maximum and
	aves, which produce		. The ratio of maximum and (d) 5:1
Intensities of two w	aves, which produce	e interference are 9:4	

(a) $y = (x - vt)^2$ (b) y = log(x + vt) (c) y = 1/x + vt (d) all of these

(a) reflection	(b) refraction	(c) beat	(d) resonance
Why do stationa	nry waves not transport e	nergy?	
When you shou fundamental no	•	gan pipe, what happe	ens to the wavelength of the
When you shou	t in front of a hill, your o	wn shout is repeated.	Explain.
When are statio	nary waves produced?		
	l between successive max		th at a point simultaneously, $ (d) \ 1/\ v_1 - v_2 $
Which of the instruments? (a) interference		is used by the musi	cians to tune their musical (d) polarization
• •		. ,	by the violin section of an
Two sound sou differ?	arce produce 12 beats in	4 seconds. By how	much do their frequencies
Doppler effect i (a) sound waves (c) both sound a	only	(b) light waves of (d) none of these	· ·

28.	Speed of sound i	n air is 340 m/s. If the	-	s starts blowing the whistle. ted sound from the whistle is ng on the platform is (d) 720 Hz
29.	What is Doppler	, ,	(1)	
2).	——————————————————————————————————————			
30.			ary source of sound winge in the apparent free (c) 10%	th a velocity one-fifth of the quency is (d) 20%
(2 ma	arks Questions)			
31.		ort both longitudinal a	and transverse waves,	but only longitudinal waves
			1	
32.	If the phase difficult corresponding pa		sound waves of wave	length λ is 60°, what is the
33.	Define wave nur	nber and angular wave	e number and give thei	r SI units.
34.		speed of a transverse	_	That should be the tension in als to the speed of sound in

	Discuss the effect of the following factors on the speed of sound: (a) pressure (b) of the humidity (d) temperature.
_	
V	What are the differences between stationary waves and progressive waves?
_	
_	
E	explain why we cannot hear an echo in a small room?
_	
_	
V	What do you mean by reverberation? What is reverberation time?
_	
_	
D	Differentiate between harmonics and overtones.
7	
	two sound waves of frequencies 480Hz and 536Hz superpose, will they produce Vould you hear the beats?

Hov	v does the frequency of a tuning fork change, when the temperature is increased?
	at is the speed of the observer for whom a note is 10 percent lower than the enuency?
sub	ONAR system fixed in a submarine operates at a frequency 40.0 kHz. An emarine moves towards the Sonar with a speed of 360km/h. What is the frequency deflected by the submarine. Take the speed of sound in water to be 1450m/s.
sub	
sub	marine moves towards the Sonar with a speed of 360km/h. What is the frequen
sub	marine moves towards the Sonar with a speed of 360km/h. What is the frequen
subs	marine moves towards the Sonar with a speed of 360km/h. What is the frequent reflected by the submarine. Take the speed of sound in water to be 1450m/s.
subi	marine moves towards the Sonar with a speed of 360km/h. What is the frequent and reflected by the submarine. Take the speed of sound in water to be 1450m/s. Questions)
subsource source	marine moves towards the Sonar with a speed of 360km/h. What is the frequency and reflected by the submarine. Take the speed of sound in water to be 1450m/s. Questions) equations of displacements of two waves are $y_1 = 10 \sin \left[3\pi t + \frac{\pi}{3} \right]$
subsource source	marine moves towards the Sonar with a speed of 360km/h. What is the frequent reflected by the submarine. Take the speed of sound in water to be 1450m/s. Questions)
subsource source	marine moves towards the Sonar with a speed of 360km/h. What is the frequency and reflected by the submarine. Take the speed of sound in water to be 1450m/s. Questions) equations of displacements of two waves are $y_1 = 10 \sin \left[3\pi t + \frac{\pi}{3} \right]$
subsource source	marine moves towards the Sonar with a speed of 360km/h. What is the frequency and reflected by the submarine. Take the speed of sound in water to be 1450m/s. Questions) equations of displacements of two waves are $y_1 = 10 \sin \left[3\pi t + \frac{\pi}{3} \right]$

What is the nature of sound waves in air? How is the speed of sound wa
atmosphere affected by the (i) humidity (ii) temperature?
Two periodic waves of intensities I_1 and I_2 pas through a region at the same time same direction. What is the sum of the maximum and minimum intensities?
same direction. What is the sum of the maximum and minimum intensities?
457
//
Give any three differences between progressive wave and stationary wave. A stat
Sive any times anieronees between progressive wave and stationary wave. It sta

Velocity of sound at room temperature is	350m/s.
	400
	
69	
of a wire between the two ends of a so see placed so that the fundamental frequents 15?	encies of the three segments are in the

of B?
(a) What is beat phenomenon?
(b) A whistle revolve in a circle with angular velocity $\omega=20$ rad/s. If the frequency the sound is 385Hz and speed is 340 m/s, then find the frequency heard by the obserwhen the whistle is at B.
Observer • Observer
A railway engine and a car are moving parallel but in opposite direction with veloci 144 km/h and 72 km/h respectively. The frequency of engine's whistle is 500Hz and velocity of sound in 340 m/s. Calculate the frequency of sound heard in the car when the car and engine are approaching each other (ii) both are moving away from each other

A String of mass 2.50kg is			•
20.0m. If a transverse jerl disturbance take to reach the		one end of tr	[Ans. 0.5s]
			1,4,6
			
A stone dropped from the to the base of the tower. Who 340m/s , $g = 9.8 \text{ m/s}^2$.			
	^A	<u> </u>	
A steel wire has a length of the wire equals the speed of			
the wife equals the speed of	Sound in dry an		IIIS ? [AIIS. 2.00×10
) 			

59. Use the formula $v = \sqrt{\lambda P/r}$ to explain why the speed of sound in air (a) is independent of pressure, (b) increases with temperature (c) increases with humidity.

what	temits ultrasound frequency 100 kHz in air. If this sound meets a water surfaction is the wavelength of (i) the reflected sound (ii) the transmitted sound? Speed In air = 340 ms^{-1} and in water = 1486 ms^{-1} . [Ans. $3.4 \times 10^{-3} \text{m}$, $1.49 \times 10^{-2} \text{m}$]
wave	spital uses and ultrasonic scanner to locate tumours in a tissue. What is the length of sound in a tissue in which the speed of sound is 1.7 kms ⁻¹ ? The operation of the scanner is 4.2 MHz. [Ans. 4.047×10 ⁻⁴ m]
A trai	nsverse harmonic wave on a strong is described by:
	$Y(x, t) = 3.0 \sin(36t + 0.081x + \pi/4)$
Wher	e x, y are in cm and t in s. The positive direction of x is from left to right.
(i)	Is this a travelling or a stationary wave? If it is travelling, what are the speed a
	direction of its propagation
(ii)	What are its amplitude and frequency?
(iii)	What is the initial phase at the origin?

Hat is the least distance between two successive crests in the wave?

(iv)

For the wave described in Qs 62 displacement (y) versus (t) graphs for $x = 0, 2$ 4cm. What are the shapes of these graphs? In which aspects does the oscillatory motio travelling wave differ from one point to another: amplitude, frequency or phase?
Given below are some functions of x and t to represent the displacement (transvers
longitudinal) of an elastic wave. State which of these represent (i) a travelling wave, (stationary wave or (iii) none at all
longitudinal) of an elastic wave. State which of these represent (i) a travelling wave, (stationary wave or (iii) none at all (a) $y = 2\cos(3x)\sin(10t)$ (b) $y = 2\sqrt{x - vt}$
longitudinal) of an elastic wave. State which of these represent (i) a travelling wave, (stationary wave or (iii) none at all
longitudinal) of an elastic wave. State which of these represent (i) a travelling wave, (stationary wave or (iii) none at all (a) $y = 2\cos(3x)\sin(10t)$ (b) $y = 2\sqrt{x - vt}$
longitudinal) of an elastic wave. State which of these represent (i) a travelling wave, (stationary wave or (iii) none at all (a) $y = 2\cos(3x)\sin(10t)$ (b) $y = 2\sqrt{x - vt}$
longitudinal) of an elastic wave. State which of these represent (i) a travelling wave, (stationary wave or (iii) none at all (a) $y = 2\cos(3x)\sin(10t)$ (b) $y = 2\sqrt{x - vt}$
longitudinal) of an elastic wave. State which of these represent (i) a travelling wave, (stationary wave or (iii) none at all (a) $y = 2\cos(3x)\sin(10t)$ (b) $y = 2\sqrt{x - vt}$
longitudinal) of an elastic wave. State which of these represent (i) a travelling wave, (stationary wave or (iii) none at all (a) $y = 2\cos(3x)\sin(10t)$ (b) $y = 2\sqrt{x - vt}$
longitudinal) of an elastic wave. State which of these represent (i) a travelling wave, (stationary wave or (iii) none at all (a) $y = 2\cos(3x)\sin(10t)$ (b) $y = 2\sqrt{x - vt}$

A metre-long tube open at one end, with a movable piston at the other end, so resonance with a fixed frequency source (a turning fork of frequency 340 Hz) whe tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the temper of the experiment. The edge effect may be neglected. [Ans. 1/3]
A steel rod 100 cm long is clamped at its middle. The fundamental frequence longitudinal vibrations of the rod is given to be 2.53 k Hz. What is the speed of sour steel? [Ans. $5.06 \times 10^3 \text{m/s}$
15
A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is resonable to the control of the pipe is resonable.
excited by a 430 Hz source? Will the same source be in resonance with the pipe if

69.	A travelling harmonic wave on a string is described by y (x, t) = $7.5 \sin (0.0050x + \pi/4)$
	(a) what are the displacement and velocity of oscillation of a point at $x = 1$ cm, an
	1s? Is this velocity equal to the velocity of wave propaga
	(b) Locate the points of the string which have the same transverse displacement velocity as the $x = 1$ cm point at $t = 2s$, $5s$ and $11s$. [Ans. 24 m/s]
70.	A narrow sound pulse (for example, a short pip by a whistle) is sent across a mediur
	Triallow sound pulse (for example, a short pip of a winstle) is sent across a median
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/2
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/2
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/2
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/2
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/0.05 Hz?
	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/0.05 Hz?
71.	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/0.05 Hz? One end of a long string of linear mass density 8.0 x 10 ⁻³ kg m ⁻¹ is connected
71.	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of so after every 20 s), is the frequency of the note produced by the whistle equal to 1/0.05 Hz? One end of a long string of linear mass density 8.0 x 10 ⁻³ kg m ⁻¹ is connected electrically driven tuning fork of frequency 256 Hz. The other end passes over a propagation of the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of so after every 20 s), is the frequency of the note produced by the whistle equal to 1/0.05 Hz?
71.	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of so after every 20 s), is the frequency of the note produced by the whistle equal to 1/0.05 Hz? One end of a long string of linear mass density 8.0 x 10 ⁻³ kg m ⁻¹ is connected electrically driven tuning fork of frequency 256 Hz. The other end passes over a pand is tied to a pan containing a mass of 90 kg. The pulley end absorbs all the incompared to the pulse of the pulley end absorbs all the incompared to the pulley end ab
71.	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of se after every 20 s), is the frequency of the note produced by the whistle equal to 1/0.05 Hz? One end of a long string of linear mass density 8.0 x 10 ⁻³ kg m ⁻¹ is connected electrically driven tuning fork of frequency 256 Hz. The other end passes over a p and is tied to a pan containing a mass of 90 kg. The pulley end absorbs all the incoenergy so that reflected waves at this end have negligible amplitude. At t = 0, the left
71.	One end of a long string of linear mass density 8.0 x 10 ⁻³ kg m ⁻¹ is connected electrically driven tuning fork of frequency 256 Hz. The other end passes over a pand is tied to a pan containing a mass of 90 kg. The pulley end absorbs all the incoenergy so that reflected waves at this end have negligible amplitude. At t = 0, the let (fork end) of the string x = 0 has zero transverse displacement (y = 0) and is me
71.	Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propaga (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of so after every 20 s), is the frequency of the note produced by the whistle equal to 1/0.05 Hz? One end of a long string of linear mass density 8.0 x 10 ⁻³ kg m ⁻¹ is connected electrically driven tuning fork of frequency 256 Hz. The other end passes over a pand is tied to a pan containing a mass of 90 kg. The pulley end absorbs all the incoenergy so that reflected waves at this end have negligible amplitude. At t = 0, the let

Earthquakes generate sound experience both transverse (S wave is about 4.0 km s ⁻¹ . A s first P wave arrives 4 min be line, at what distance does the	S) and longitudina seismograph reco efore the first S w	al (P) sound words P and S wave. Assumin	vaves. Typically the spectaves from an earthquak
			
A bat is flitting about in a caremission frequency of the b	at is 40 kHz. Du	iring one fast	swoop directly toward
wall surface, the bat is movi	-	the speed of	
does the bat hear reflected of	i the wall?		[Ans. 42.47 kHz]
• ()			

(5 marks Qs)

74. For the wave described by $y(x, t) = 3.0 \sin(36t + 0.018x + \pi/4)$. Plot the displacement (u) versus (t) graphs for x = 0, 2 and 4cm. What are the shaped of these graphs? In which aspects does the oscillatory motion in travelling wave differ from one point to another: amplitude, frequency or phase?

• ,
<i>J</i>

76. The equation of a plane progressive wave is given by equation: $y = 10 \sin 2\pi (t - 0.005x)$, where x and y are in cm and t in seconds. Calculate (i) amplitude (ii) frequency (iii) wavelength (iv) velocity of wave.

A transverse harmonic wave on a string is described by $y(x, t) = 3.0$ sibn (36t + 0.018)
$\pi/4$) where x and y are in cm and t in s. The positive direction of x is from left to right.
(a) Is this a travelling wave or a stationary wave? If it is travelling, what are the sp
and direction of its propagation?
(b) What are its amplitude and frequency?
(c) What is the initial phase at the origin?
(d) What is the least distance between two successive crests in the wave?
/
X

78.	A standing wave set up in a medium is given by $y = 4\cos\left(\frac{\pi x}{3}\right)$ where x an y are in cm
	and t is in seconds. (i) Write the equation of the two component waves and give amplitude and velocity of each wave. (ii) What is the distance between the adjacent modes? (iii) What is the velocity of the particle of the medium at $x = 3$ cm and time $t = 3$ cm.
	1/8s?
70	
79.	The transverse displacement of a string (clamped at its two ends) is given by $y(x, t) = 0.06 \sin(2\pi/3) \times \cos 120\pi t$ where x, y are in m and t in s. The length of the string is 1.5m and its mass is 3.0×10^{-2} kg. Answer the following:
	(a) Does the function represent a travelling or a stationary wave?
	(b) Interpret the wave as a superposition of two waves travelling in opposite directions.
	What are the wavelength frequency and speed of propagation of each wave?
	(c) Determine the tension in the string.
	<u>/</u>

wi W	train standing in a station yard, blows a whistle of frequency 400 Hz in still air. The ind starts blowing in the direction from the yard to the station with a speed of 10m/s that are frequency, wavelength and speed of sound for an observer standing on the ation platform? Is the situation exactly identical to the case when the air is still and the
	oserver runs toward the yard at a speed of 10m/s? The speed of sound in still air can be ken as 340m/s.
	Cui as 540m/s.
	<u> </u>
A	train standing at the outer signal of a railway station blows a whistle of frequenc
40	00Hz in still air.
ap	What is the frequency of the whistle for a platform observer when the train (a proaches the platform with a speed of 10m/s. (b) recedes from the platform with eed of 10m/s.
(;;	What is the speed of sound in each case if the speed of sound in still air is 340 m/s.

Υc	ou have learnt that travelling wave in one dimension is represented by a fraction
the	, t) where x and t must appear in the combination $x - vt$ or $x + vt$, i.e. $y = F(x \pm c)$ converse true? Examine if the following functions for y can possibly represent the velling wave: (a) $(x - vt)^2$ (b) $\log[(x + vt)x_0]$ (c) $\exp[-(x + vt)/x_0]$ (d) $1/(x + vt)$.
_	
_	e transverse displacement of a string (clamped at its two ends) is given by $y(x, t)$
0.0	$6 \sin 2\pi / 3 \times \cos (120\pi t)$
0.0 wh	

(iii) Determine the tension in the string.

							6/7
						4	
oscillate	with the same	a string desce (a) frequence of a point 0.	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		
oscillate	with the same	e (a) frequen	cy, (b) phas	e, (c) amplit	tude? Ex		

85. Explain why (or how):

- (a) in a sound wave, a displacement node is a pressure antinode and vice versa.
- (b) bats can ascertain distances, directions, nature and sizes of the obstacles without any "eyes".

	pagate in gases, and f a pulse gets distorte	d during propagat	tion in a dispersive medium
			7
	4	N	
4	Gy		
40			