WORKSHEET- MOTION IN PLANE

A. SCALAR AND VECTOR

(1 Mark Questic	ons)	
-----------------	------	--

What are the magr	nitudes of $\hat{i} + \hat{j}$ and $(\hat{i} - \hat{j})$?	
	the following physical quantities, in eleration, density, number of mo	
		
Temperature, pres	rector quantity in the following list: ssure, impulse, time, power, total ent of friction, charge.	path length, energy, gravitational
Read each stateme	nt below carefully and state with rea	asons, if it is true or false: (1 mark each)
a)The magnitude	of a vector is always a scalar.	
		
b)Each componer	at of a vector is always a scalar.	
(c) The total path particle.	length is always equal to the magnit	ude of the displacement vector of a

particle over the same interval of time.

to cover the path) is either greater or equal to the magnitude of average velocity of the

	Read each statement below carefully and state, with reasons and examples, if it is true false: A scalar quantity is one that (a) is conserved in a process (b) (1 mark each statement below carefully and state, with reasons and examples, if it is true false: A scalar quantity is one that
	(b) can never take negative values
	(c) must be dimensionless
	(d) does not vary from one point to another in space
	(e) has the same value for observers with different orientations of axes.
	Consider the quantities, pressure, power, energy, impulse, gravitational potent electrical charge, temperature, area. Out of these, the only vector quantities are (a) Impulse, pressure and area (b) Impulse and area (c) Area and gravitational potential (d) Impulse and pressure
1	arks Questions)
	One of the rectangular components of a velocity of 80 km/h is 40 km/h. Find the ot

edge of the paths as she	skating on a circular ice ground of radius 200 m start from a point P ground and reach a point Q diametrically opposite to P following di own in Fig. What is the magnitude of the displacement vector for each sthis equal to the actual length of path skate? [Ans. 40]
	A B C
A vector ha	s magnitude and direction.
(i) Does it h	nave a location in the space?
(ii) Can it v	ary with time?
<u> </u>	wo equal vectors a and b at different locations in space necessarily sysical effects? Give examples in support of your answer.

11.	Can you associate vectors with (a) the length of a wire bent into a loop (b) a plane area (c) a sphere? Explain.
(5 M	arks Questions)
12.	State parallelogram law of vector addition. Find analytic the magnitude and direction of resultant vector. Apply it to find the resultant when, (i) Two vectors are parallel to each other (ii) Two vectors are perpendicular to each other
13.	State triangle law of vector addition. Find analytically the magnitude and direction of resultant vector. Also discuss the special cases.
	<u> </u>
	´

61

B. ADDITION AND SUBTRACTION OF VECTOR

(1 Mark Questions)

Which of the following is not a property of a null vector? 1.

(a) $\vec{A} + \vec{0} = \vec{A}$

(b) $\lambda \vec{0} = \vec{0}$ where λ is scalar (c) $0\vec{A} = \vec{A}$ (d) $\vec{A} - \vec{A} = 0$

Which of the following quantities dependent of the choice of orientation of the coordinate 2. axes?

(a) $\vec{A} + \vec{B}$

(b) $A_x + B_y$ (c) $|\overrightarrow{A} + \overrightarrow{B}|$

(d) Angle between \vec{A} and \vec{B}

If $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$, then angle between \vec{A} and \vec{B} will be 3.

(a) 30°

(b) 45°

(c) 60°

(d) 90°

Fifteen vectors, each of magnitude 5 units, are represented by the sides of a closed 4. polygon, all taken in same order. What will be their resultant?

- At what angle the two forces A + B and A B act so that their resultant is $\sqrt{3A^2 + B^2}$? 5.
- 6. Give an example of a zero vector.

(2 Marks Questions)

Can we apply the commutative and associative laws to vector subtraction also? 7.

ABCDE is a pentagon. Prove that: $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA} = 0$. 8.

	What would be the angle θ between two vectors \overrightarrow{A} and \overrightarrow{B} for their resultant \overrightarrow{R} to be maximum?
	Establish the following inequalities geometrically or otherwise:
	(a) $ \overrightarrow{A} + \overrightarrow{B} \le \overrightarrow{A} + \overrightarrow{B} $ (b) $ \overrightarrow{A} + \overrightarrow{B} \ge \overrightarrow{A} - \overrightarrow{B} $ (c) $ \overrightarrow{A} - \overrightarrow{B} \le \overrightarrow{A} + \overrightarrow{B} $ (d) $ \overrightarrow{A} - \overrightarrow{B} \ge \overrightarrow{A} - \overrightarrow{B} $ When does the equality sign above apply?
M	arks Questions)
	Prove that $ \vec{a} - \vec{b} \ge \vec{a} - \vec{b} $. When does the equality holds?
	If vectors \vec{P} , \vec{Q} and \vec{R} have magnitude 5, 12 and 13 units and $\vec{P} + \vec{Q} = \vec{R}$. Find the angle between \vec{Q} and \vec{P} .

4	1	
rı		

	unit vector parallel to the resultant of the vectors $\vec{A} = 2\hat{i} + 3\hat{j} + 2\hat{i} + 3\hat{j} + $
$\vec{B} = 3\hat{i}$ -	$-5\hat{j}+\hat{k}$.
resultan	t force.
	rces equal to P and 2P act on a particle. If the first be doubled and the sec
	rces equal to P and 2P act on a particle. If the first be doubled and the second by 20 Newton, the direction of the resultant is unaltered. Find the value of

65		
nh	_	

mana11a1 4a D
parallel to B.
1.4.0
A train is moving with a velocity of 30 km/h due east and a car is moving with a car i
of 40km/h due north. What is the velocity of car as appears to a passenger in the train
A plane is travelling eastward at a speed of 500 km/h. But a 90km/h wind is blo
southward. What is the direction and speed of the plane relative to the ground?
southward. What is the direction and speed of the plane relative to the ground:

410

C. MULTIPLICATION OF VECTOR

(1 Mark Questions)

Wh	at is the dot product of two similar unit vectors?
Wh	at is the value of $\hat{i}.(\hat{j}\times 2\hat{k})$?
Cto	to with magazine whether the following alsohusis angustions with applea and us
_	te with reasons, whether the following algebraic operations with scalar and versical quantities are meaningful: (1 mark each)
	adding any two scalars,
— (b)	adding a scalar to a vector of the same dimensions,

) adding any two ve	ctors,		
f) adding a compone	ent of a vector to	o the same vector.	
ne angle between \vec{A}	$=\hat{i}+\hat{j}$ and $\vec{B}=$	$= \hat{1} - \hat{j}$, is	
) 45°	(b) 90°	(c) –45°	(d) 180°
is found that $ \overrightarrow{A} + \overrightarrow{B} =$	$ \overrightarrow{A} $. This necess	sarily implies,	
$) \vec{B} = 0$		(b) \vec{A}, \vec{B} are antiparalle	el
$) \overrightarrow{A}, \overrightarrow{B}$ are perpendicu	ılar	(d) $\overrightarrow{A} \cdot \overrightarrow{B} \leq 0$	
	en the vectors ?	$\overrightarrow{A} = 2\hat{i} - 4\hat{j} + 6\hat{k}$ and $\overrightarrow{B} = 3\hat{i} + \hat{j}$	+ 2 K .
			
or what value of a a	re the vectors $\bar{\lambda}$	$\vec{A} = a\hat{i} - 2\hat{j} + \hat{k} \vec{B} = 2a\hat{i} + a\hat{j} - a\hat{i}$	4k and perpend
ch other.		,	1 1
ien other.			
		g pairs of vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}$	` 1 <u>5</u> 2î

10. (a) If \hat{i} and \hat{j} are unit vectors along X- and Y-axis respectively, then what is the

magnitude and direction of $\hat{i} + \hat{j}$ and $\hat{i} - \hat{j}$?

(b) Find the components of along the directions of vectors and $\hat{i}+\hat{j}$ and \hat{i} - \hat{j} .

[Ans. (a)45°,45°, (b)
$$5/2(\hat{i} + \hat{j})$$
, - ½ $(\hat{i} - \hat{j})$.]

(3 Marks Questions)

11. Two vectors both equal in magnitude, have their resultant equal in magnitude of the either. Find the angle between the two vectors.

D. INTRODUCTION OF MOTION IN PLANE

(1 Mark Questions)

1. Figure shows the orientation of two vectors u and v in the XY plane. If $u = a\hat{i} + b\hat{j}$ and $v = p\hat{i} + q\hat{j}$

which of the following is correct?

- (a) a and p are positive while b and q are negative.
- (b) a, p and b are positive while q is negative.
- (c) a, q and b are positive while p is negative.
- (d) a, b, p and q are all positive.

2. For any arbitrary motion in space, which of the following relations are true: (1 mark each)

(a)
$$\vec{v}_{average} = (1/2)[\vec{v}(t_1) + \vec{v}(t_2)]$$

(b)
$$\vec{v}_{average} = [\vec{r}(t_2) - \vec{r}(t_1)]/(t_2 - t_1)$$

(c)
$$\vec{v}$$
 (t) = \vec{v} (0) + \vec{a} t

(d)
$$\vec{r}$$
 (t) = \vec{r} (0) + \vec{v} (0)t + (1/2) \vec{a} t²

(e)
$$\vec{a}_{\text{average}} = [\vec{v}_{\text{t}}(t_2) - \vec{v}_{\text{t}}(t_1)]/(t_2 - t_1)$$

(The average stands for average of the quantity over the time interval t_1 to t_2)

(3 Marks Questions)

3. A cyclist starts from the centre O of a circular park of radius 1 km, reaches the edge P of the park, then cycles along the circumference, and returns to the centre along QO as shown in Fig. If the round trip takes 10 min, what is the (a) net displacement, (b) average velocity, and (c) average speed of the cyclist? [Ans. (iii) 21.43 kmh⁻¹]

7	Λ
	u

away on a st circuitous path	rriving in a new town wishes to go from the station to a hotel located raight road from the station. A dishonest cab man takes him a 23 km long and reaches the hotel in 28 min. What is (a) the average the magnitude of average velocity? Are the two equal?
or the taxi, (b)	[Ans. 49.3 kmh ⁻¹ , 21.4
The position of	of a particle is given by
	$\vec{r} = 3.0t \ \hat{i} - 2.0t^2 \ \hat{j} + 4.0 \hat{k} \ m$
Where t is in s	$\vec{r} = 3.0t \ \hat{i} - 2.0t^2 \ \hat{j} + 4.0 \hat{k} \ m$ econds and the coefficients have the proper units for \vec{r} to be in metre
(a) Find the va	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle,
(a) Find the va	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle, a magnitude and direction of velocity of the particle at $t = 2.0s$?
(a) Find the va	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle,
(a) Find the va	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle, a magnitude and direction of velocity of the particle at $t = 2.0s$?
(a) Find the va	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle, a magnitude and direction of velocity of the particle at $t = 2.0s$?
(a) Find the va	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle, a magnitude and direction of velocity of the particle at $t = 2.0s$?
(a) Find the va	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle, a magnitude and direction of velocity of the particle at $t = 2.0s$?
(a) Find the va (b) What is the	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle, e magnitude and direction of velocity of the particle at $t = 2.0s$? [Ans. 70° with seconds of the particle at $t = 2.0s$]
(a) Find the va (b) What is the	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle, e magnitude and direction of velocity of the particle at $t = 2.0s$? [Ans. 70° with seconds of the particle at $t = 2.0s$]
(a) Find the va (b) What is the	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle, e magnitude and direction of velocity of the particle at $t = 2.0s$? [Ans. 70° with seconds of the particle at $t = 2.0s$]
(a) Find the va (b) What is the	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle, e magnitude and direction of velocity of the particle at $t = 2.0s$? [Ans. 70° with seconds of the particle at $t = 2.0s$]
(a) Find the va (b) What is the rks Questions) The position value where t is in second to the position of th	econds and the coefficients have the proper units for \vec{r} to be in metro- lue of \vec{v} and \vec{a} of the particle, e magnitude and direction of velocity of the particle at $t=2.0s$? [Ans. 70° with \vec{r}]

		~ \

E. PROJECTILE MOTION

(1 Mark Questions)

1. The horizontal range of a projectile fired at an angle of 15° is 50 m. If it is fired with the same speed at an angle of 45°, its range will be

(a) 60 m

(b) 71 m

(c) 100 m

(d) 141 m

2. A particle is projected in air at some angle to the horizontal, moves along parabola as shown in Figure, where x and y indicate horizontal and vertical directions, respectively. Show in the diagram, direction of velocity and acceleration at points A, B and C.

3. A football is kicked into the air vertically upwards. What is its (a) acceleration, and (b) velocity at the highest point?

<u>/_____</u>

4. In case of a projectile motion, what is the angle between the velocity and acceleration at the highest point?

(a) 0°

(b) 45°

(c) 90°

(d) 180°

5.	From a certain height above the ground a stone A is dropped gently. Simultaneously
	another stone B is fired horizontally. Which of the two stone will arrive on the ground
	earlier?

(2 Marks Questions)

6. The velocity of a projectile at the initial point A is $(2\hat{i}+3\hat{j})$ m/s. What will be its velocity (in m/s) at point B?

7. Prove that the maximum horizontal range is four times the maximum height attained by a projectile which is fired along the required oblique direction.

(3 Marks Questions)

- 8. Show that motion of one projectile as seen from another projectile will be a straight line.
- 9. The equations of motion of a projectile are given by x = 36t m and $2y = 96t 9.8t^2$ m. Find the angle of projection.

7	1
	4

high. Find	le is fired horizontally with a velocity of 98 m/s from the top of a hi (i) the time taken to reach the ground (ii) the distance of the target fi) the velocity with which the projectile hits the ground.
`	
	le has a range of 50m and reaches a maximum height of 10m. Calcu
angle at w	hich the projectile is fired.
	• X Y
	the maximum horizontal range is four times the maximum height attactile, when fired at an inclination so as to have maximum horizontal range
	le is fired with a velocity 'u' making an angle θ with the horizontal. Sh

7	1
•	4

_	
	he ceiling of a long hall is 25 m high. What is the maximum horizontal distance all thrown with a speed of 40 m s ⁻¹ can go without hitting the ceiling of the hall?
	[Ans. 150.7 m]
_	
_	
	cricketer can throw a ball to a maximum horizontal distance of 100 m. How much cove the ground can the cricketer throw the same ball? [Ans. 50 m]
	[7 ms. 50 m]
<u>^</u>	
	n aircraft is flying at a height of 3400 m above the ground. If the angle subtende round observation point by the aircraft positions 10 s apart is 30°, what is the specific positions 10 s apart is 30°, what is the specific positions 10° is a part in the specific positions 10° is a part in the specific position.
	e aircraft? Time taken by aircraft from A to B is 10 s. [Ans. 182.2 ms ⁻¹]

10		
18.	A bullet fired at an angle of 30° with the horizontal hits the ground 3 km away. By adjusting its angle of projection, can one hope to hit a target 5 km away? Assume the muzzle speed to the fixed, and neglect air resistance. [Ans. 3.46 km]	75
19.	A fighter plane flying horizontally at an altitude of 1.5 km with speed 720 km h ⁻¹ passes directly overhead an anti-aircraft gun. At what angle from the vertical should the gun be fired for the shell with muzzle speed 600 m s ⁻¹ to hit the plane? At what minimum altitude should the pilot fly the plane to avoid being hit? (Take $g = 10 \text{ m s}^{-2}$)? [Ans. 16 km]	
(5 M	farks Questions)	
20.	A body is projected with velocity v at an angle θ with the horizontal. Find the (a) Time of flight (b) Maximum height attained (c) Maximum range for the body.	
	• • • • • • • • • • • • • • • • • • • •	
F, R	ELATIVE VELOCITY IN TWO DIMENSIONS	
(3 N	farks Questions)	
1.	A motorboat is racing towards north at 25 km/h and the water current in that region is 10km/h in the direction of 60° east of south. Find the resultant velocity of the boat.	

	n a speed of 10km/h in still water. If the river flows stean should the boatman row in order to reach a point on the
bank directly opposite to	the point from where he started? The width of the river is
Rain is falling vertically	with a speed of 30 m s ⁻¹ . A woman rides a bicycle with a
	south direction. What is the direction in which she shou
her umbrella?	[Ans. 18°26']
ner umorena.	[7415. 10 20]
	• X Y
A man can swim with a s	speed of 4.0 km h ⁻¹ in still water. How long does he take t
a river 1.0 km wide if the	speed of 4.0 km h ⁻¹ in still water. How long does he take t

76

G. UNIFORM CIRCULAR MOTION

(1 Mark Questions)

1. A stone tied to the end of a string 100cm long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in 22s, then the acceleration of the stone is

2.	Velocity vector and acceleration vector in a uniform circular motion are related as
	(a) both in same direction (b) perpendicular to each other
	(c) both in opposite direction (d) not related to each other
3.	Can an object be accelerated without speeding up or slowing down? Explain.
4.	What the angular frequency of the object if it complete 100 revolutions in 50 seconds?
5.	Read each statement below carefully and state, with reasons, if it is true or false: (1 mark each)
	(a) The net acceleration of a particle in circular motion is always along the radius of the circle towards the centre.
	(b) The velocity vector of a particle at a point is always along the tangent to the path of the particle at that point.
	(c) The acceleration vector of a particle in uniform circular motion averaged over one cycle is a null vector
(2 M	Tarks Questions)
6.	A car is moving along a circular road at speed of 20m/s. The radius of the circular road is 10m. If the speed is increased at the rate of 30m/s ² , what is the resultant acceleration?

(a) 16 ms^{-2} (b) 4 ms^{-2} (c) 12 ms^{-2} (d) 8 ms^{-2}

7	റ
	×

_	fircular orbit can be taken as 3.85×10^5 km.
-	
-	
-	
	A stone tied to the end of a string 80 cm long is whirled in a horizontal circle was
	constant speed. If the stone makes 14 revolutions in 25 s, what is the magnitude
d	lirection of acceleration of the stone? [Ans. 9.90 ms ⁻²]
_	
_	
_	
_	
Α	An aircraft executes a horizontal loop of radius 1.00 km with a steady speed of 900 k
	Compare its centripetal acceleration with the acceleration due to gravity. [Ans. 6.38]
	C Y
-	
_	

(5 Marks Questions)

10. (i) Derive an expression for the centripetal acceleration of a body moving with uniform speed v along a circular path of radius r.

	and direction of acceleration of the stone?
~	HALLENGING PROPLEMS
C	HALLENGING PROBLEMS
	In a harbour, wind is blowing at the speed of 72 km/h and the flag on the mast of a bo anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat? [Ans. 0.01°]
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving a speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat? [Ans. 0.01°] A cyclist is riding with a speed of 27 km/h. As he approaches a circular turn on the results of the boat starts moving a speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?
	anchored in the harbour flutters along the N-E direction. If the boat starts moving at speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat?

79

\sim	_
\cdot	
\sim	

show that for a projectile the angle between the velocity and the x-axis as a time is given by $\theta(t) = \tan^{-1} \left(\frac{v_{0y} - gt}{v_{0x}} \right)$
Shows that the projection angle θ_0 for a projectile launched from the origin is $\theta_0 = \tan^{-1} \left(\frac{4h_m}{R} \right)$
re the symbols have their usual meaning.
 46
ector has both magnitude and direction. Does that mean anything that has madirection is necessarily a vector? The rotation of a body can be specified
ction of the axis of rotation and the angle of rotation about the axis. Does the cotation a vector?

7

