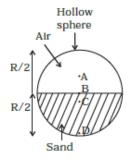
WORKSHEET- SYSTEMS OF PERICLES AND ROTATIONAL MOTION


A. CENTRE OF MASS

O Mark Questions	(1	Mark	Questions
------------------	----	------	------------------

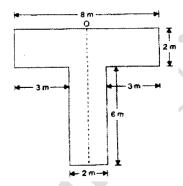
- 1. Define centre of mass.
- 2. The velocity of centre of mass of the system remains constant, if the total external force acting on the system is
 - (a) minimum
- (b) maximum
- (c) unity
- (d) zero
- 3. Show that the centre of mass of an isolated system moves with a uniform velocity along a straight line path.

- 4. For which of the following does the centre of mass lie outside the body?
 - (a) A pencil
- (b) A shotput
- (c) A dice
- (d) A bangle
- 5. Which of the following points is the likely position of the centre of mass of the system shown in Fig.?

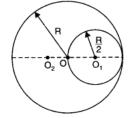
- (a) A
- (b) B

(c) C

(d) D


(2 Marks Questions)

6. Two point mass of 1kg and 2kg lie at (1, 2) and (2, - 3) respectively. Calculate the coordinates of the centre of mass of the system.



7.	Three identical spheres each of radius 'r' and mass 'm' are placed on a vertical plane
	such that each spheres touching each other and stay in equilibrium. Find the position of
	centre of mass.

8. Find the position of the centre of mass of the T-shaped plate from O in figure.

9. From a uniform disk of radius R, a circular hole of radius R/2 is cut out. The centre of the hole is at R/2 from the centre of the original disc. Locate the centre of gravity of the resulting flat body. [Ans. R/6]

Three masses 3, 4 and 5kg are located at the corners of an equilateral triangle of side 1m.
Locate the centre of mass of the system. [Ans. 0.54m, 0.36m]
Locate the centre of mass of the system. [Ans. 0.54m, 0.50m]
Two bodies of masses 10kg and 2kg are moving with velocities $2\hat{i} - 7\hat{j} + 3\hat{k}$ and
$-10\hat{i} + 35\hat{j} - 3\hat{k} \text{ ms}^{-1}$ respectively. Find the centre of mass of the system.
Tot 1 33 j 3k his Tespeetivery. That the centre of mass of the system.
Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie inside the body?
In the HCl molecule, the separation between the nuclei of the two atoms is about 1.27 Å (1 Å = 10^{-10} m). Find the approximate location of the CM of the molecule, given that a chlorine atom is about 35.5 times as massive as a hydrogen atom and nearly all the mass of an atom is concentrated in its nucleus. [Ans. 1.235Å]

14.	A child sits stationary at one end of a long trolley moving uniformly with a speed V on a smooth horizontal floor. If the child gets up and runs about on the trolley in any manner, what is the speed of the CM of the (trolley + child) system?		
B. IN	NTRODUCTION OF ROTATORY MOTION		
(1 M	(ark Questions)		
1.	A flywheel rotating at 420 rpm shows down at a constant rate of 2 rad/s. The time required to stop the flywheel is (a) 22s (b) 11s (c) 44s (d) 12s		
2.	What is a rigid body?		
3.	When a disc rotates with uniform angular velocity, which of the following is not true? (a) The sense of rotation remains same. (b) The orientation of the axis of rotation remains same. (c) The speed of rotation is non-zero and remains same. (d) The angular acceleration is non-zero and remains same.		
(2 M	(arks Questions)		
4.	What is the value of linear velocity, if $\vec{r} = 3\hat{i} + 4\hat{j} + 6\hat{k}$ and $\vec{\omega} = -5\hat{i} + 3\hat{j} + 5\hat{k}$?		
(3 M	(arks Questions)		
5.	A constant power is supplied to a rotating disc. How is angular velocity (ω) of disc varies with number of rotations (n) made by the disc?		
			

1	1	7
	14	. /

(5 Marks Questions)

6.	Define rotational motion of a body. Derive the following equations of ro	tational motio	n
	under constant angular acceleration.		

(a) $\omega = \omega_0 + \alpha t$

(b)	$\theta = \omega$	$t_0 +$	$\frac{1}{2}\alpha t^2$
-----	-------------------	---------	-------------------------

(c)
$$\omega^2 = \omega_0^2 + 2\alpha\theta$$

C.	MOMENT	OF	INERTIA

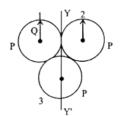
(1 Mark Questions)

- 1. The moment of inertia of a body depends upon
 - (a) mass of the body

- (b) axis of rotation of the body
- (c) shape and size of the body
- (d) all of these

2. Define 1 kg m^2 .

- 3. Two masses each of mass M are attached to the end of a rigid massless rod of length L. The moment of inertia of the system about an axis passing through centre of mass and perpendicular to its length is
 - (a) $ML^2/4$
- (b) $ML^2/2$
- (c) ML^2
- (d) $2ML^2$

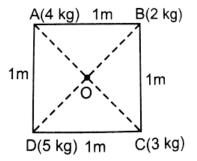

4. State the theorem of perpendicular axes.

1	1	0
- 1	4	×

De	fine radius of gyration of a body rotating about an axis. Derive an expression for it.
	two circular discs A and B are of same mass but of radii r and 2r respectively, that is the moment of inertia of A in terms that of B?
	te parallel axis theorem of moment of inertia. What is the moment of inertia of a g (ii) disc about diameter?
len	ree mass points m_1 , m_2 and m_3 are located at the vertices of an equilateral triangle gth a. What is the moment of inertia of the system about an axis along the altitude triangle passing through m_1 ?
_	
Sta	te the factors on which the moment of inertia of a body depends.

(3 Marks Questions)

10. Three identical rings, each of mass M and radius R are arranged as shown in figure. What is the moment of inertia of the arrangement about YY'?


1 0

11. Calculate the MI of a uniform circular disc of mass 500gm and radius 10cm about
(i) Diameter (ii) Axis tangent to the disc and parallel to diameter (iii) Axis passing through centre and perpendicular to its plane.

12. State the theorem of parallel axis and perpendicular axes.

13. Four points of masses 4kg, 2kg, 3kg and 5kg are respectively located at the four corners A, B, C and D of a square of side 1m as shown in figure. Calculate the moment of inertia of the system about (i) an axis passing through the point of intersection of the diagonals and perpendicular to the plane of the square. (ii) the side AB and (iii) the diagonal BD.

[Ans. (i) 7kg m^2 (ii) 8 kg m^2 (iii) 3.5 kg m^2]
, (7)

14.	Three particles, each of 10g are located at the corners of an equilateral triangle of side
	5cm. Determine the moment of inertia of this system about an axis passing through one
	corner of the triangle and perpendicular to the plane of the triangle. [Ans. 5×10 ⁻⁵ kgm ²]

- 15. (a) Find the moment of inertia of a sphere about a tangent to the sphere, given the moment of inertia of the sphere about any of its diameters to be 2 MR²/5, where M is the mass of the sphere and R is the radius of the sphere.
 - (b) Given the moment of inertia of a disc of mass M and radius R about any of its diameters to 1 be 1/4 MR², find the moment of inertia about an axis normal to the disc passing through a point on its edge. [Ans. 7/5 MR², 3/2 MR²]

√	

D. ROTATIONAL DYNAMICS

(1 Mark Questions)

1. The SI unit of angular momentum is

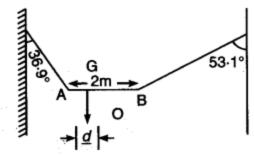
(a) kg ms ⁻¹	(b) Nm	(c) kg m^2s^{-1}	(d) Nm^2	1
When a torque (a) Force	e acting upon a system (b) Linear impulse	is zero. Which of the fol (c) Linear momentum	lowing will be constant? (d) angular momentum	_
(a) transitional	l equilibrium only	equilibrium, when it is in (b) rotational equ	•	
(c) either (a) o	or (b)	(d) neither (a) no	or (b)	
position vecto	= =	=	force Facts at a point whose e power associated with the	
(a) $(\vec{r} \times \vec{F}) \cdot \vec{\omega}$	(b) $(\vec{r} \times \vec{F}) \times \vec{\omega}$	(c) $\vec{r} \cdot (\vec{F} \times \vec{\omega})$	(d) $\vec{r} \times (\vec{F} \times \vec{\omega})$	
	following principles a con of energy	circuit acrobat employs in (b) Conservation	A	
State right han	nd rule to find the direc	ction of angular momentu	ım.	
C				
	•			
Why do we pr	refer to use wrench of l	longer arm?		
, , , , , ₁				
			·····	
Is it difficult to	o open the door by pus	shing it or pulling it at the	e hinge. Why?	
Why a force is opening it?	s applied at right angle	es to the heavy door at the	e outer edge while closing or	•
7				
opening it?		<u>-</u>	e outer edge while closing of the two	-

		hat would happen to the	the length of the day!			
Two identica	Two identical particles move towards each other with velocity 2v and v respecti					
What is the v	velocity of the centre of m	nass?	10			
			33			
What is torqu	ue? Give its SI unit.					
= -	cal quantity is represente	ed by the product of m	noment of inertia and ar			
velocity?	1 A					
Define the to	rm moment of momentur					
Define the te	rm moment of momentur	n.				
Define the te	rm moment of momentur	n.				
	. 69		D. and many M. is a second			
A Merry-go-	round, made of a ring-li	ke platform of radius				
A Merry-go-with angular	. 69	ke platform of radius	it. At one instant, the p			
A Merry-go- with angular jumps off the	round, made of a ring-li speed ω. A person of m	ke platform of radius	it. At one instant, the p			
A Merry-go- with angular jumps off the	round, made of a ring-li speed ω. A person of m e round, radially away fro	ke platform of radius	it. At one instant, the p			
A Merry-go- with angular jumps off the The speed of	round, made of a ring-li speed ω. A person of m e round, radially away fro the round afterwards is	ke platform of radius ass M is standing on om the centre of the room	it. At one instant, the pund (as seen from the ro			

152

1	_	7

How a ballet da momentum?	ncer does take th	ne advantage o	of the principle of	of conservation of
A solid sphere r the total kinetic		ined plane. Fir	nd the ratio of its	rotational kinetic
		1		
_		−5k̂ about th	e origin which	acts on a particle
position vector	s î + j – k .			

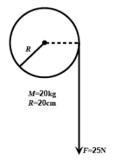

ā	rks Questions)
	Define torque. Derive an expression for it in Cartesian coordinates.
	A 3m long ladder weighing 20kg leans on a frictionless wall. Its feet rest on the floor 1m from the wall as shown in figure. Find the reaction forces of the wall and the floor.
	A flywheel of mass 25kg has a radius of 0.2m. What force would be applied tangentially to the rim of the flywheel so that it acquires an angular acceleration of 2 rad s ⁻¹ ?
	[Ans. 5N]

1		_
	ר	7

A ring of d	liameter 0.4m and mass 10kg is rotating about its axis at the rate of 2
_	ment of inertia (ii) angular momentum and (iii) rotational KE of the rin
riiiu (1)iiio.	The second secon
	[Ans. 0.4 kg m^2 , $88 \text{ kg m}^2 \text{s}^{-1}$]
	//
	4*0
- 1 · · · · · · · · · · · · · · · · · ·	
	the ice on the polar caps of the earth melts, how will it affect the du
the day?	
	A A
Establish t	ne relation between torque and angular acceleration. Hence define mo
	ne relation between torque and angular acceleration. Hence define mo
	ne relation between torque and angular acceleration. Hence define mo
	ne relation between torque and angular acceleration. Hence define me
	ne relation between torque and angular acceleration. Hence define mo
	he relation between torque and angular acceleration. Hence define me
	ne relation between torque and angular acceleration. Hence define mo
inertia.	he relation between torque and angular acceleration. Hence define more than the relation between moment of inertia and torque on a rigid body.
inertia.	
Establish tl	

1	_	4
- 1	ה	n

State	and prove the principle of conservation of angular momentum.
 1	the components along the x, y, z-axes of the angular momentum 1 of a par
p_x, p_y	se position vector is r with components x, y, z and momentum is p with compound p_z . Show that if the particle moves only in the x-y plane the angular momently a z- component.
Two	particles, each of mass m and speed v, travel in opposite directions along pa separated by a distance d. Show that the vector angular momentum of the cle system the same whatever be the point about which the angular momentum
lines	· · · · · · · · · · · · · · · · · · ·
lines partic	· · · · · · · · · · · · · · · · · · ·
lines partic	· · · · · · · · · · · · · · · · · · ·
lines partic	· · · · · · · · · · · · · · · · · · ·
lines partic	· · · · · · · · · · · · · · · · · · ·
lines partic	· · · · · · · · · · · · · · · · · · ·


	[Ans. 72cm]
	A
	<u> </u>
A car weighs 1800 kg. The distance between its front and back axle	es is 1.8 m. Its centre
of gravity is 1.05 m behind the front axle. Determine the force	exerted by the leve
ground on each front wheel and each back wheel.	Ans. 3675N, 5145N]
• 🔠	
Torques of equal magnitude are applied to a hollow cylinder and	a solid sphere, both
having the same mass and radius. The cylinder is free to rotate about symmetry, and the sphere is free to rotate about an axis passing thro	ıt its standard axis o
having the same mass and radius. The cylinder is free to rotate about symmetry, and the sphere is free to rotate about an axis passing thro	ıt its standard axis o
having the same mass and radius. The cylinder is free to rotate about symmetry, and the sphere is free to rotate about an axis passing thro	ıt its standard axis o
having the same mass and radius. The cylinder is free to rotate about symmetry, and the sphere is free to rotate about an axis passing thro	ıt its standard axis o
Torques of equal magnitude are applied to a hollow cylinder and having the same mass and radius. The cylinder is free to rotate about symmetry, and the sphere is free to rotate about an axis passing thro of the two will acquire a greater angular speed after a given time?	ıt its standard axis o
having the same mass and radius. The cylinder is free to rotate about symmetry, and the sphere is free to rotate about an axis passing thro	ıt its standard axis o

	A rope of negligible mass is wound round a hollow cylinder of mass 3 kg and radiu cm. What is the angular acceleration of the cylinder if the rope is pulled with a force
	30 N? What is the linear acceleration of the cylinder if the tope is puned with a force 30 N? What is the linear acceleration of the rope? Assume that there is no slipping. [Ans. 25 rad s ⁻² , 10 ms ⁻²]
	The oxygen molecule has a mass of 5.30 x 10 ⁻²⁶ kg and a moment of inertia of 1.94 x
	⁴⁵ kg m ² about an axis through its centre perpendicular to the lines joining the two ato Suppose the mean speed of such a molecule in a gas is 500 m/s and that its kinetic en of rotation is two thirds of its kinetic energy of translation. Find the average ang velocity of the molecule. [Ans. 6.75×16 ¹² rad s ⁻¹]
aı	rks Questions)
	(a) Derive an expression for torque on polar coordinates.
	(b) A torque of 20 Nm is applied on a wheel initially are rest. Calculate the ang
	momentum at the wheel after 3s.

158

necessary to brin	ng it to rest tin 20s	? If the torq	ue is due to a	g 240rpm. What is force applied tang	
the rim of the fly	wheel, what is the	magnitude	of the force?		
					

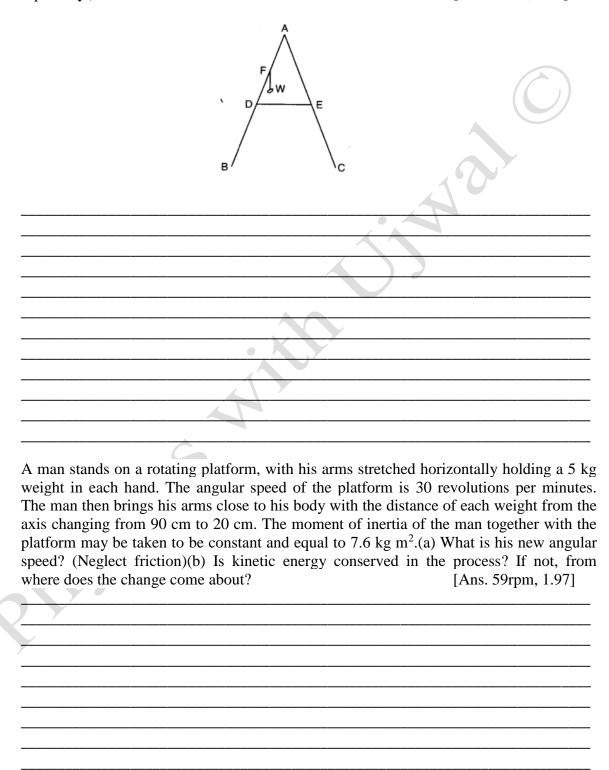
45. A cord of negligible mass is wound round the rim of flywheel of mass 20kg and radius 20cm. A steady pull of 25N is applied on the cord as shown in figure. The flywheel is mounted on a horizontal axis with frictionless bearings.

- (a) Compute the angular acceleration of the wheel.
- (b) Find the work done by the pull, when 2m of the cord is unwind.
- (c) Find also the kinetic energy of the wheel at this point. Assume that the wheel starts from rest.
- (d) Compare answers to parts (b) and (c).

1	6	Λ
- 1	h	u

	e rate of change of total angular momentum on the system is equal to the total torque acting on the system.	
		-, (0)
	pression for the total work done on a rigid boo	
and rotationa	I motions. Hence deduce the condition for the	equilibrium of the rigid t
	· O `	
	7	
		
<u></u>		

-	
-	
_	
-	
-	
_	
-	
ROL	LING MOTION
Mark	k Questions)
	Work done by friction during pure rolling motion of a ball on Rough surface is zero. (True or False).
-	
I	Friction is required but necessary for rolling. (True or False).
_	
-	
Mark	ks Questions)
	Determine the total kinetic energy of a rolling object.
- Marl	


				(-
angles of	sphere rolls down two of inclination, (a) Will ake longer to roll down	it reach the bottom	with the same s	speed in each cas
			A A	
mass ha	s a speed of 20 cm/s. I	How much work has t	o be done to sto	op it? [Ans. 4J]
the inc	cylinder rolls up an in lined plane the cent far will the cylinder g	tre of mass of the		
(30) == 0	long will it take to ret	turn to the bottom?		[Ans. 3.8m, 3.0s
` '				
` '				
` '				

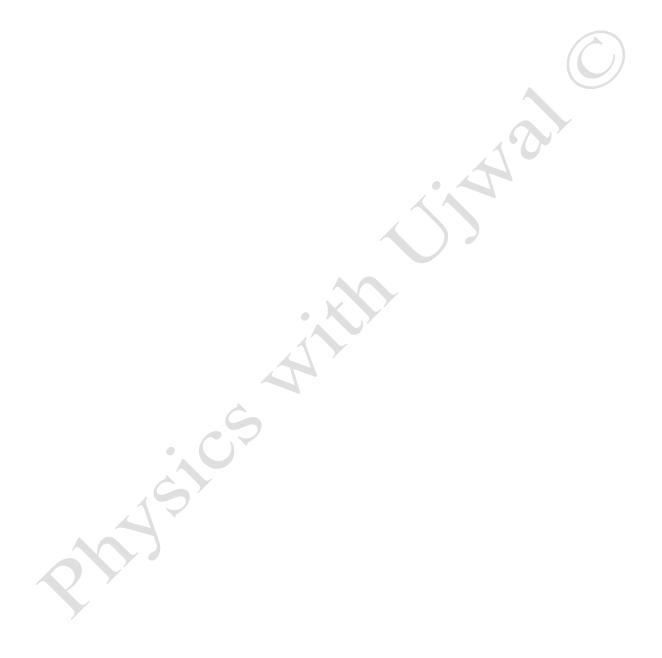
	What is the force of friction after perfect rolling begins?
 arks (Questions)
dov	rain the expression for the linear acceleration of a solid cylinder of radius 'R' rown an inclined plane. Also find the frictional force acting between the solid cylinder plane.
	tain an expression for the linear acceleration of a cylinder rolling down an incine and hence find the condition for the cylinder to roll down without slipping.
Y	

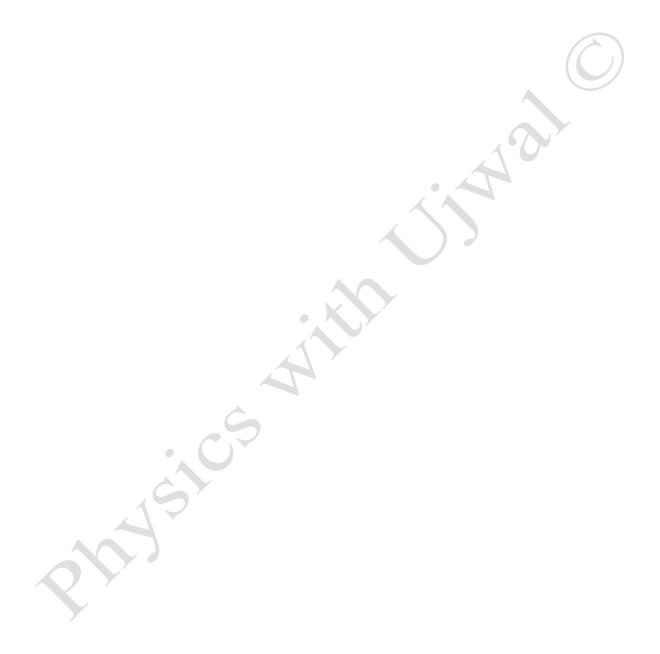
163

11.	Read each statement below carefully, and state, with reasons, if it is true or false: (a) During rolling, the force of friction acts in the same direction as the direction of 164 motion of the CM of the body.
	 (b) The instantaneous speed of the point of contact during rolling is zero. (c) The instantaneous acceleration of the point of contact during rolloing is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping
	(not rolling) motion.
F. CH	HALLENGING PROBLEMS
1.	(a) A child stands at the centre of a turntable with his arms outstretched. The turntable is set rotating with an angular speed of 40 rev/min. How much is the angular speed of the child if he folds his hands back and thereby reduces his moment of inertia to 2/5 times the initial value? Assume that the turntable rotates without friction, (b) Show that the child's new kinetic energy of rotation is more than the initial kinetic energy of rotation. How do you account of this increase in kinetic energy? [Ans. 100 rpm, 2.5]
	<u></u>
2.	As shown in Fig. the two sides of a step ladder BA and CA are 1.6 m long and hinged at A. A rope DE, 0.5 m is tied halfway up. A weight 40 kg is suspended from a point F, 1.2

m from B along the ladder BA. Assuming the floor to be friction less and neglecting the weight of the ladder, find the tension in the rope and forces exerted by the floor on the 165 ladder. (Take $g = 9.8 \text{ m}^2$)(Hint: Consider the equilibrium of each side of the ladder separately.) [Ans. 147N, 97N]

3.


	vertical axis at one end is $ML^2/3$.) [Ans. 0.625 rad s ⁻¹]
-	
_	
-	
-	
-	
-	
-	
-	
-	
t	A disc rotating about its axis with angular speed w_o is placed lightly (without arranslational push) on a perfectly friction less table. The radius of the disc is R. What a the linear velocities of the points A, B and C on the disc shown in Fig.? Will the disc rotate the direction indicated?
	To the second se
	В


1	6	7

			~~~	
			A	
30°. The coefficient (a) How much is the work (b) What is the work (c) and (c) are the coefficient (c) and (c) are the coefficient (c) are the coeffic	is 10 kg and radius 15 cm nt of static friction us = 0. the force of friction acting ork done against friction d ion O of the plane is inc not roll perfectly?	25. on the cylind uring rolling?	er?	pes the cy
30°. The coefficient (a) How much is the work (c) If the inclination	nt of static friction us = 0. the force of friction acting ork done against friction do tion O of the plane is inc	25. on the cylind uring rolling?	er? nat value of 8 do	pes the cy
30°. The coefficient (a) How much is the work (c) If the inclination	nt of static friction us = 0. the force of friction acting ork done against friction do tion O of the plane is inc	25. on the cylind uring rolling?	er? nat value of 8 do	pes the cy
30°. The coefficient (a) How much is the work (c) If the inclination	nt of static friction us = 0. the force of friction acting ork done against friction do tion O of the plane is inc	25. on the cylind uring rolling?	er? nat value of 8 do	pes the cy
30°. The coefficient (a) How much is the work (c) If the inclination	nt of static friction us = 0. the force of friction acting ork done against friction do tion O of the plane is inc	25. on the cylind uring rolling?	er? nat value of 8 do	pes the cy
30°. The coefficient (a) How much is the work (c) If the inclination	nt of static friction us = 0. the force of friction acting ork done against friction do tion O of the plane is inc	25. on the cylind uring rolling?	er? nat value of 8 do	pes the cy
30°. The coefficient (a) How much is the work (c) If the inclination	nt of static friction us = 0. the force of friction acting ork done against friction do tion O of the plane is inc	25. on the cylind uring rolling?	er? nat value of 8 do	pes the cy
30°. The coefficient (a) How much is the work (c) If the inclination	nt of static friction us = 0. the force of friction acting ork done against friction do tion O of the plane is inc	25. on the cylind uring rolling?	er? nat value of 8 do	pes the cy
30°. The coefficient (a) How much is the work (c) If the inclination	nt of static friction us = 0. the force of friction acting ork done against friction do tion O of the plane is inc	25. on the cylind uring rolling?	er? nat value of 8 do	pes the cy
30°. The coefficient (a) How much is the work (c) If the inclination	nt of static friction us = 0. the force of friction acting ork done against friction do tion O of the plane is inc	25. on the cylind uring rolling?	er? nat value of 8 do	pes the cy

1	-	O
- 1	h	×

$h_{xx} x^2 - 2 ch / (1 + 1)$		iannicai ce	nisideration	sideration of for
by,v ² =2gh/(1+k torques). Note: the radius of the	k is the radius of	of gyration	n of the boo	symmetry axis, a plane.
torques). Note	k is the radius of	of gyration	n of the boo	
torques). Note	k is the radius of	of gyration	n of the boo	
torques). Note	k is the radius of	of gyration	n of the boo	
torques). Note	k is the radius of	of gyration	n of the boo	
torques). Note	k is the radius of	of gyration	n of the boo	



