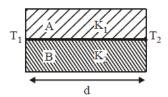

NEET 2017

(PHYSICS)


1. Two blocks A and B of masses 3m and m respectively are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in the figure. The magnitudes of acceleration of A and B immediately after the string is cut, are respectively.

- (a) g, g/3
- (b) g/3, g
- (c) g, g
- (d) g/3, g/3
- 2. The acceleration due to gravity at a height 1km above the earth is the same as at a depth d below the surface of earth. Then
 - (a) d = 1/2 km
- (b) d = 1 km
- (c) d = 3/2 km
- (d) d = 2 km
- 3. A particle executes linear simple harmonic motion with an amplitude of 3cm. When particle is at 2cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then, its time period in seconds is
 - (a) $\sqrt{5/\pi}$
- (b) $\sqrt{5/2} \pi$
- (c) $4 \pi / \sqrt{5}$
- (d) $2 \pi / \sqrt{3}$
- 4. The resistance of a wire is R ohm. If it is melted and stretched to n times its original length, its new resistance will be
 - (a) nR
- (b) R/n
- (c) n^2R
- (d) R/n^2
- 5. A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system.
 - (a) increases by a factor of 4
- (b) decreases by a factor of 2

(c) remains the same

- (d) increases by a factor of 2
- 6. Two rods A and B of different materials are welded together as shown in figure. Their thermal conductivities are K₁ and K₂. The thermal conductivity of the composite rod will be

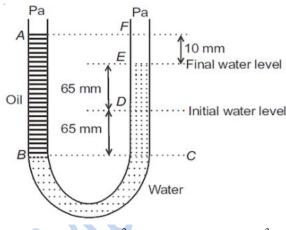
- (a) $K_1+K_2/2$
- (b) $3(K_1+K_2)/2$
- (c) $K_1 + K_2$
- $(d)2(K_1+K_2)$

7.		nonics of a tube closed he fundamental freque	-	at other end are 220Hz
	(a) 10Hz	(b) 20Hz	(c) 30Hz	(d) 40Hz
8.	` '	` '	` '	uniform pressure o, the
0.		-	b. If it is subjected to	uniform pressure o, the
	fractional decrease in		(-) 2 ·· /D	(4) /2D
0	(a) p/B	(b) B/3p	(c) 3p/B	(d) p/3B
9.			-	ormed out of c, G and
		ty of light, G is univers	_	
	(a) $\frac{1}{c^2} \left[G \frac{e^2}{4\pi \varepsilon_0} \right]^{1/2}$	(b) $c^2 \left[G \frac{e^2}{4\pi\epsilon_0} \right]^{1/2}$	(c) $\frac{1}{c^2} \left[\frac{e^2}{G4\pi\epsilon_0} \right]^{1/2}$	(d) $\frac{1}{c}G\frac{e^2}{4\pi\epsilon_0}$
10.	Figure shows a circu	uit that contains three	identical resistors wi	th resistance $R = 9.0\Omega$
	each, two identical in	nductors with inductan	ce L = 2.0mH and an	ideal battery with emf ε
	= 18V. The current i	through the battery jus	at after the switch close	ed is
		<u> </u>		
		<u>+</u> L	R ≱ K	
		Ť]		
		R∰	igl +c	
	() 2 . 1	4) 0 2 4		(1) 0.4
1.1	(a) 2mA	(b) 0.2A	(c) 2A	(d) 0A
11.	=	-		s m and the other end is
			=	cle moves in circle with
		e on the particle (direct	cted towards centre) v	vill be (T represents the
	tension in the string)	(1) 77 . 2/1	() Tr 2/1	(1)
10	(a) T		(c) $T - mv^2/l$	
12.				m. The velocity of the
				elength 2536×10^{-10} m is
		$6 \text{ eVs and } c = 3 \times 10^8 \text{ ms}$		(1) 0.2 106 -1
		(b) $\approx 0.6 \times 10^6 \text{ ms}^{-1}$		
13.		•		has decay constant λ .
			After what time the ra	atio of number of nuclei
	of material B to that			
	$(a)1/\lambda$	(b) $1/7 \lambda$	$(c)1/8 \lambda$	$(d)1/9 \lambda$
14.	•	<u>*</u>	_	dius 40cm. What is the
	•	of the cylinder, if the re		
	(a) 25 m/s^2	(b) 0.25 rad/s^2	(c) 25 rad/s^2	(d) 5 m/s^2
15.	•		• •	ith speed of 22 m/s and
	-	·		orn having a frequency
	=	ency heard by the dri	iver of the second ca	r is [velocity of sound
	340m/s]			

	(a) 350Hz	(b) 361Hz	(c) 411Hz	(d) 448Hz	
16.	A 250 turn recta	angular coil of length	2.1cm and width 1.25	cm carries a current of 8	5 μΑ
		•		done for rotating the co	•
	180° against the	_	C	C	,
	(a)9.1µJ	-	(c) 2.3µJ	(d) 1.5uJ	
17.	•			metre. At the centre of	of the
				th its axis coinciding wi	
			-	nstant rate to 0A from 4	
				arge flowing through the	
	during this time		, 10 % 22, the total en	arge nowing through the	Con
	(a) 32 πμC		(c) 32μC	(d) 16 πμC	
18.	•	• • •	• • •	ly. One of them is $-e$ ar	nd the
10.					
	`	<i>'</i>	0	vitational force between	
	• •	-		tomic size) apart is zero	, then
			rogen, $m_h = 1.67 \times 10^{-27}$		
1.0	(a) 10^{-20} C	(b) 10^{-23} C	` '	` '	
19.			ational free space after	having lost contact with	their
	spaceship. The t				
		at the same distance			
	(b) move toward		(c) move away	from each other	
	(d) will become				
20.		elengths of the last li	ne of Balmer series and	d the last line of Lyman	series
	is				
	(a) 2	(b) 1	(c) 4	(d) 0.5	
21.				brium with heavy water	r at a
	-	(elvin) and mass m is			
	(a) — h	(b) $\frac{h}{\sqrt{3mkT}}$	(c) — 2h	(d) $\frac{2h}{\sqrt{mkT}}$	
	\sqrt{mkT}	$\sqrt{3mkT}$	$\sqrt{3\text{mkT}}$	\sqrt{mkT}	
22.	A thin prism ha	ving refracting angle	10° is made of glass	of refractive index 1.42.	This
	prism is combi	ned with another t	hin prism of glass o	f refractive index 1.7.	This
	combination pro	duces dispersion with	hout deviation. The ref	racting angle of second	prism
	should be				
	(a) 4°	(b) 6°	(c) 8°	(d) 10°	
23.	Thermodynamic	s processes are indicate	ated in the following di	lagram.	
		P↑	. (
		1 \ i	IV f		
		/1	MIII f		
			1 1014		

Match the following:

Column-II
P. Process I
Q. Process II
B. Isobaric
R. Process III
C. Isochoric
S. Process IV
D. Isothermal


(a)
$$P \rightarrow C, Q \rightarrow A, R \rightarrow D, S \rightarrow B$$

(b)
$$P \rightarrow C$$
, $Q \rightarrow D$, $R \rightarrow B$, $S \rightarrow A$

(c)
$$P \rightarrow D$$
, $Q \rightarrow B$, $R \rightarrow A$, $S \rightarrow C$

(d)
$$P \rightarrow A$$
, $Q \rightarrow C$, $R \rightarrow D$, $S \rightarrow B$

A U tube with both ends open to the atmosphere is partially filled with water, is poured into one side until it stands at a distance of 10mm above the water level on the other side. Meanwhile the water rises by 65mm from its original level (see diagram). The density of the oil is

- (a) 650 kg m^{-3}
- (b) 425 kg m^{-3}
- (c) 800 kg m^{-3}
- (d) 928 kg m⁻³
- 25. A spring of force constant k is cut into lengths of ratio 1:2:3. They are connected in series and the new force constant k'. If they are connected in parallel and force constant is k", then k': k" is
 - (a) 1:6
- (b) 1:9
- (c) 1:11
- (d) 1:14

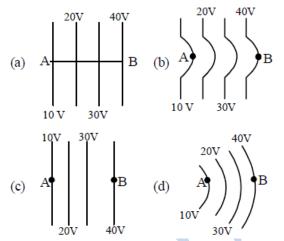
- 26. Which of the following statements are correct?
 - 1. Centre of mass of a body always coincides with the centre of gravity of the body
 - 2. Centre of mass of a body is the point at which the total gravitational torque on the body is zero
 - 3. A couple on a body produce both translational and rotational motion in a body
 - 4. Mechanical advantage greater than one means that small effort can be used to lift a large load
 - (a) 2 and 4
- (b) 1 and 2
- (c) 2 and 3
- (d) 3 and 4
- 27. A beam of light from a source L is incident normally on a plane mirror fixed at a certain distance x from the source. The beam is reflected back as a spot on a scale placed just above the source L. When the mirror is rotated through a small angle θ , the spot of the light is found to move through a distance y on the scale. The angle θ is given by

	(a) y/2x	(b) y/x	(c) $x/2y$	(d) x/y
28.	A gas mixture consis	sts of 2 moles of O_2 are	nd 4 moles of Ar at ter	mperature T. Neglecting
	all vibrational modes	, the total internal ener	gy of the system is	
	(a) 4RT	(b) 15RT	(c) 9RT	(d) 11RT
29.	-	•	•	eight of 1km. It hits the
	ground with a speed	of 50m/s. Take g const	ant with a value of 10	m/s^2 . The work done by
	the (i) gravitational for	orce and the (ii) resisting	ve force of air is	
	(a) (i) $-10J$, (ii) -8.2	25J	(b) (i) $1.25J$, (ii) $-8.25J$	
	(c) (i) 100J, (ii) 8.75J		(d) (i) $10J$, (ii) -8.75	
30.	•	•	_	ised as a refrigerator. If
		e system is 10J, the am	nount of energy absorb	ed from the reservoir at
	lower temperature is			
	(a) 1J	(b) 90J	(c) 99J	(d) 100J
31.				cular to plane of paper
		=		ure. Magnitude of force
	of per unit length on	the middle wire is give	en by	
		₽ ₽ <u>"</u>	- ●°	
		90°		
		d		
		A		
	11 i ²	2 u i^2	$\sqrt{2}$ u i^2	11 i ²
	(a) $\frac{\mu_0 i^2}{2\pi d}$	(b) $\frac{2\mu_0 r}{\pi d}$	(c) $\frac{\sqrt{2\mu_0}i^2}{\pi d}$	(d) $\frac{\mu_0 i^2}{\sqrt{2}\pi d}$
32.	2714	inotes of the partials	at any tima ara v –	$5t - 2t^2 \text{ and } y = 10t$
32.	·	-	•	3t - 2t and $y - 10t$ celeration of the particle
	at $t = 2s$ is	and y are in metres an	id t ili secolids. The act	celeration of the particle
	(a) 0	(b) 5 m/s 2	$(c) - 4 \text{ m/s}^2$	$(d) - 8 \text{ m/s}^2$
33.				vavelengths $\lambda_1 = 4000\text{Å}$
33.	and $\lambda_2 = 6000$ Å is	g powers of an optical	inicroscope for two w	vavelengths $\mathcal{N}_1 = 4000A$
	(a) $8:27$	(b) 9:4	(c) 3:2	(d) 16:81
34.	V. M	` '	` '	ot working. She walked
54.				mains stationary on the
			<u>-</u>	me taken by her to walk
	up on the moving esc		ter up in time t2. The tr	me taken by her to waik
	(a) $t_1 + t_2/2$	(b) $t_1.t_2/t_2 - t_1$	(c) $t_1.t_2/t_2+t_1$	(d) $t_1 - t_2$
35.	` '	` '	` '	t power at 500K. If the
55.	=	nd the temperature dou		=
	(a) 225	(b) 450	(c) 1000	(d) 1600
	(u) 223	(0) 100	(5) 1000	(4) 1000

36.	A potentiometer in an accurate and versatile device to make electrical measurement of			
	EMF because the method involves (a) cell (b) potential gradients			
	(c) a condition of no current flow through the galvanometer			
	(d) a combination of cells, galvanometer and resistances			
37.	The given electrical network is equivalent to			
31.	The given electrical network is equivalent to			
	A B			
	(a) AND gate (b) OR gate (c) NOR gate (d) NOT gate			
38.	In a common emitter transistor amplifier, the audio signal voltage across the collector is			
	3V. The resistance of collector is $3k\Omega$. If current gain is 100 and the base resistance is			
	$2k\Omega$, the voltage and power gain of the amplifier is			
	(a) 200 and 1000 (b) 15 and 200 (c) 150 and 15000 (d0 20 and 2000			
39.	Two discs of same moment of inertia rotating about their regular axis passing though the			
	centre and perpendicular to the plane of disc with angular velocities ω_1 and ω_2 . They are			
	brought into contact face to face coinciding the axis of rotation. The expression for loss			
	of energy during this process is			
	(a) $1/2 1 (\omega_1 + \omega_2)^2$ (b) $1/4 1 (\omega_1 - \omega_2)^2$ (c) $1 (\omega_1 - \omega_2)^2$ (d) $1/8 1 (\omega_1 - \omega_2)^2$			
40.	Young's double slit experiment is first performed in air and then in a medium other than			
	air. It is found that 8th bright fringe in the medium lies where 5th dark fringe lies in air.			
	The refractive index of the medium is nearly			
	(a) 1.25 (b) 1.59 (c) 1.69 (d) 1.78			
41.	Which one of the following represents forward bias diode?			
	(a) $\frac{-4 \text{ V}}{}$ $\frac{R}{}$ $\frac{-3 \text{ V}}{}$			
	(b) $\frac{-2 \text{ V}}{}$			
	(c) $\frac{3 \text{ V}}{\text{W}}$ $\frac{R}{5 \text{ V}}$			
	(d) $\frac{0 \text{ V}}{\text{W}}$ $\frac{R}{-2 \text{ V}}$			
42.	Two polaroids P ₁ and P ₂ are placed with their axis perpendicular to each other.			

42. Two polaroids P_1 and P_2 are placed with their axis perpendicular to each other. Unpolarized light I_0 is incident on P_1 . A third Polaroid P_3 is kept in between P_1 and P_2 such that its axis makes and angle 45° with that of P_1 . The intensity of transmitted light through P_2 is

(a) $I_0/2$


(b) $I_0/4$

(c) $I_0/8$

(d) $I_0/16$

43. In an electromagnetic wave in free space the root mean square value of the electric field is $E_{rms} = 6V/m$. The peak value of the magnetic field is

- (a) 1.41×10^{-8} T
- (b) 2.83×10^{-8} T
- (c) 0.70×10^{-8} T
- (d) 4.23×10^{-8} T
- 44. If θ_1 and θ_2 be the apparent angles of dip observed in two vertical planes at right angles to each other, then the true angle of dip θ is given by
 - (a) $\cot^2 \theta = \cot^2 \theta_1 + \cot^2 \theta_2$
- (b) $\tan^2 \theta = \tan^2 \theta_1 + \tan^2 \theta_2$
- (c) $\cot^2 \theta = \cot^2 \theta_1 \cot^2 \theta_2$
- (d) $\tan^2 \theta = \tan^2 \theta_1 \tan^2 \theta_2$
- 45. The diagrams below show regions of equipotentials

A positive charge is moved from A to B in each diagram

- (a) Maximum work is required to move q in figure (c)
- (b) In all four cases the work done is the same
- (c) Minimum work is required to move q in figure (a)
- (d) Maximum work is required to move q in figure (b)