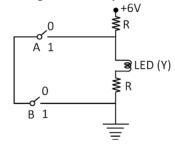
NEET 2019

(PHYSICS)

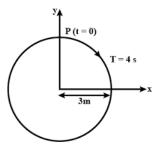
For a p type semiconductor which of the following statements is true?

(a) Holes are the majority carriers and trivalent atoms the dopants.

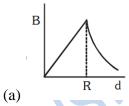

1.

	(b) Holes are the majority carriers and pentavalent atoms the dopants.				
	(c) Electrons are the majority carriers and pentavalent atoms the dopants.				
	(d) Electrons are the	majority carriers and	trivalent atoms the dop	pants.	
2.	A body weighs 200N	N on the surface of the	earth. How much will	it weigh half way?	
	(a) 200N	(b) 250N	(c) 100N	(d) 150N	
3.	In which of the follo	wing processes, heat i	s neither absorbed nor	released by a system?	
	(a) adiabatic	(b) isobaric	(c) isochoric	(d) isothermal	
4.	Six similar bulbs are	e connected as shown	in the figure with a	DC source of emf E and	
	zero internal resistan	ice.	6'0		
The ratio of power consumption by the bulbs when (i) all are glowing and (ii)					
	situation when two f	rom section A and one	e from section B are gl	owing, will be	
		· ← → ←	B		
		m	m_ m_		
		m	m		
		I _m T	m		
			١•٠٢		
		L F			
	(a) 9:4	(b) 1:2	(c) 2:1	(d) 4:9	
5.	A small hole of area	a of cross section 2 m	m ² is present near the	e bottom of a fully filled	
	open tank of height	2m. Taking $g = 10 m$	$/s^2$, the rate of flow o	f water through the open	
	hole would be nearly				
	(a) $8.9 \times 10^{-6} \text{m}^3/\text{s}$	(b) $2.23 \times 10^{-6} \text{m}^3/\text{s}$	(c) $6.4 \times 10^{-6} \text{m}^3/\text{s}$	(d) $12.6 \times 10^{-6} \text{m}^3/\text{s}$	
6.	A force $F = 20+10y$	acts on a particle in y-	direction where F is in	n Newton and y in metre.	
	Work done by this fo	orce to move the partic	ele from $y = 0$ to $y = 1$	m is	
	(a) 5J	(b) 25J	(c) 20J	(d) 30J	
7.	Two point charges A	and B, having charge	es +Q and – Q respecti	ively are placed at certain	
	distance apart and fo	orce acting between the	em is F. If 25% charge	e of A is transferred to B,	
	then force between t	he charges becomes			
	(a) 9F/16	(b) 16F/9	(c) $4F/3$	(d) F	
8.	When an object is sl	not from the bottom of	f a long smooth inclin	ed plane kept at an angle	
	60° with horizontal,	it can travel a distance	\mathbf{x}_1 along the plane. B	ut when the inclination is	
		ŭ	shot with the same	velocity, it can travel x	
	distance. Then $x_1:x$,	,	
	(a) $\sqrt{2}:1$	(b) 1:√3	(c) $1:2\sqrt{3}$	(d) $1:1\sqrt{2}$	
PHYSIC	CS MASTERS ACADEM	Y. SECTOR 23. ROHINI	DELHI. (Mob. 8	810401402)[Type text]	

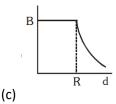
- 9. Pick the wrong answer in the context with rainbow:
 - (a) the order of colours is reversed in the secondary rainbow
 - (b) an observer can see a rainbow when his front is towards the sun
 - (c) rainbow is a combined effect of dispersion refraction and reflection of sunlight
 - (d) when the light rays undergo two internal reflections in a water drop, a secondary rainbow is formed.
- Average velocity of a particle executing SHM in one complete vibration is 10.
 - (a) Aw
- (b) $A\omega^{2}/2$
- (c) zero
- (d) $A\omega/2$
- 11. The total energy of an electron in an atom in an orbit is -3.4eV. Its kinetic energy and potential energies are respectively
 - (a) -3.4eV, -6.8eV (b) 3.4eV, -6.8eV
- (c) 3.4eV, 3.4eV
- (d) -3.4eV, -3.4eV
- 12. At a point A on the earth's surface the angle of dip, $\delta = +25^{\circ}$. At a point B on the earth's surface the angle of dip, $\delta = -25^{\circ}$. We can intercept that
 - (a) A is located in the southern hemisphere and B is located in the northern hemisphere.
 - (b) A is located in the northern hemisphere and B is located in the southern hemisphere.
 - (c) A and B both located in the southern hemisphere
 - (d) A and B both located in the northern hemisphere
- 13. In which of the following devices, the eddy current effect is not used?
 - (a) magnetic braking in train
- (b) electromagnet

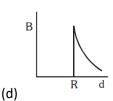

(c) electric heater

- (d) induction furnace
- Two particles A and B are moving in uniform circular motion in concentric circles of 14. radii r_A and r_B with speed v_A and v_B respectively. Their time period of rotation is the same. The ratio of angular speed of A to that of B will be
 - (a) v_A:v_B
- (b) r_B:r_A
- (c) 1:1
- (d) $r_A:r_B$
- 15. Two similar thin equi-convex lenses of focal length f each are kept co-axially in contact with each other such that the focal length of the combination is F_1 . When the space between the two lenses is filled with glycerine (which has the same index ($\mu = 1.5$) as that of glass) then the equivalent focal length is F_2 . The ratio of F_1 : F_2 will be
 - (a) 1:2
- (b) 2:3
- (c) 3:4
- (d) 2:1
- An electron is accelerated through a potential difference of 10,000V. Its de-Broglie 16. wavelength is (nearly): $(m_e = 9 \times 10^{-31} \text{kg})$
 - (a) 122×10^{-12} m
- (b) 122×10^{-14} m
- (c) 122 nm
- (d) 122×10^{-13} m
- 17. The correct Boolean operation represented by the circuit diagram drawn is

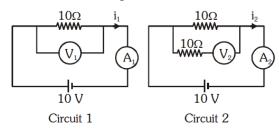

	(a) OR	(b) NAND	(c) NOR	(d) AND			
18.	A soap bubble hav	ring radius of 1mm is b	lown from a deterge	ent solution having a surface			
	tension of 2.5×10	tension of 2.5×10^{-2} N/m. The pressure inside the bubble equals at a point Z_0 below the					
	free surface of wat	er in a container. Takir	$g = 10 \text{ m/s}^2 \text{ dens}$	ity of water = 10^3 kg/m^3 , the			
	value of Z ₀ is						
	(a) 10cm	(b) 1cm	(c) 0.5cm	(d) 100cm			
19.	The displacement of a particle executing simple harmonic motion is given by $y = A_0 + A$						
	$\sin \omega t + B \cos \omega t$. Then the amplitude of its oscillation is given by						
	(a) $\sqrt{A^2 + B^2}$	(b) $\sqrt{A_0^2(A+B)^2}$	(c) A + B	(d) $A_0 + \sqrt{A^2 + B^2}$			
20.	The work done to	raise a mass m from	the surface of the	earth to a height h which is			
	equal to the radius	equal to the radius of the earth is					
	(a)2mgR	(b) 1/2 mgR	(c) 3/2 mgR	(d) mgR			
21	The speed of a sw	immer in still water is	20m/s. The speed o	f river water is 10m/s and is			
	flowing due east.	flowing due east. If he is standing on the south bank and wishes to cross the river along					
	the shortest path th	e angle at which he sho	ould make his stokes	w.r.t. north is given by			
	(a) 0°	(b) 60° west	(c) 45° west	(d) 30° west			
22.	Two parallel infin	ite line charges with lin	near charge densitie	es + λ C/m and – λ C/m are			
	placed at a distance	e of 2R in free space.	What is the electric	e field mid way between the			
	two line charges?	Y					
	(a) $2\lambda/\pi\epsilon_0 R N/C$	(b) $\lambda/\pi\epsilon_0 R N/C$	(c) $\lambda/2\pi\epsilon_0 R N/C$	C (d) zero			
23.	Which of the follow	wing acts as a circuit pr	otection device?				
	(a) inductor	(b) switch	(c) fuse	(d) conductor			
24.	A parallel plate c	apacitor of capacitance	e 20μF is being cl	harged by a voltage source			
	whose potential is	whose potential is changing at the rate of 3V/s. The conduction current through the					
	connecting wires and the displacement current through the plates of the capacitor,						
	be, respectively						
	(a) 60μA, 6μA	(b) 60μA, zero	(c) zero, zero	(d) zero, 60μA			
25.	When a block of n	nass M is suspended by	y a long wire of len	gth L, the length of the wire			
	becomes $(L + l)$. T	he elastic potential ener	rgy stored in the ext	ended wire is			
	(a) MgL	(b) 1/2 Mgl	(c) 1/2 MgL	(d) Mgl			
26.	A hollow metal sp	phere of radius R is un	niformly charged.	The electric field due to the			
	sphere at a distance r from the centre						
	(a) zero as r increa	(a) zero as r increases for r <r, as="" decreases="" for="" increases="" r="">R</r,>					
	(b) zero as r increa	es for $r < R$, increases as r increases for $r > R$					
	(c) decreases as r increases for r <r and="" for="" r="">R</r>						
	(d) increases as r in	(d) increases as r increases for r <r and="" for="" r="">R</r>					
27.	A mass m is attached to a thin wire and whirled in a vertical circle. The wire is most						
	likely to break who	en					
	(a) the wire is horiz	zontal	(b) the mass is a	t the lowest point			

28.	` '	ngle of 60° from vertice e light has the longest	` '	e highest point
20.	(a) Blue	(b) Green	(c) Violet	(d) Red
29.	` '	with velocity v is acte	` '	wn by the vector triangle
		P	Q	
	(a) decrease		(b) remain constant	
	(c) change according	ng to the smallest force	QR (d) increase	U
30.	constant magnetic	field B. The ratio of the	eir radii of their paths r	
	(a) 1:2	(b) 4:1	(c) 1:4	(d) 2:1
31.	The unit of thermal	•		
	(a) $J m^{-1} K^{-1}$	(b) W m K ⁻¹	(c) W m ⁻¹ K ⁻¹	(d) J m K ⁻¹
32.		effective area 0.05 m ² of its co planar will be		to a magnetic field 5×10^{-5} ed in the coil will be
	(a) 0.2V	(b) $2 \times 10^{-3} \text{V}$	(c) 0.02V	(d) 2V
33.		m and mass 100kg rol How much work is need		or. Its centre of mass has
	(a) 30 kJ	(b) 2J	(c) 1J	(d) 3J
34.	quantities A, B, C percentage of error	C and D are 1%, 2%, in the measurement X	3% and 4% respective, where $X = A^2B^{1/2}/C^{1/2}$	
2.5	(a) 16%	` '	(c) 10%	
35.		is head on and elasti		er body B of mass 2m, at collision the fraction of
	(a) 8/9	(b) 4/9	(c) 5/9	(d) 1/9
36.		e, the period of revolu	` '	d sense of revolution are




y-projection of the radius vector of rotating particle P is

- (a) $y(t) = 4\sin(\pi t/2)$ where y in m
- (b) $y(t) = 3\cos(3\pi t/2)$, where y in m
- (c) $y(t) = 3\cos(\pi t/2)$ where y in m
- (d) $y(t) = -3\cos 2\pi t$ where y in m
- In total internal reflection when the angle of incidence is equal to the critical angle for the 37. pair of media in contact, what will be angle of refraction?
 - (a) 0°
- (b) equal to angle of incidence (c) 90°
- (d) 180°
- A solid cylinder of mass 2kg and radius 4cm is rotating about its axis at the rate of 3 rpm. 38. The torque required to stop after 2π revolutions is
 - (a) 2×10^{-3} N-m
- (b) 12×10^{-4} N-m
- (c) 2×10^6 N-m
- (d) 2×10^{-6} N-m
- A block of mass 10kg in contact against inner wall of a hollow cylindrical drum of radius 39. 1m. The coefficient of friction between the block and the inner wall of the cylinder is 0.1. The minimum angular velocity needed to the cylinder to keep the block stationary when the cylinder is vertical and rotating about its axis will be $(g = 10 \text{ m/s}^2)$
 - (a) $10/2\pi \text{ rad/s}$
- (b) 10 rad/s
- (c) 10π rad/s
- (d) $\sqrt{10}$ rad/s
- A cylindrical conductor of radius R is carrying a constant current. The plot of the 40. magnitude of the magnetic field B with the distance d from the centre of the conductor, is correctly represented by the figure



(b)

41. In the circuit shown below, the readings of voltmeters and the ammeters will be

- (a) $V_1 = V_2$ and $i_1 > i_2$ (b) $V_1 = V_2$ and $i_1 = i_2$ (c) $V_1 > V_2$ and $i_1 > i_2$ (d) $V_1 > V_2$ and $i_1 = i_2$
- Increase in temperature of a gas filled in a container would lead to 42.
 - (a)increase in its kinetic energy
- (b) decrease in its pressure
- (c) decrease in intermolecular distance
- (d) increase in its mass

43.44.45.	length independ (a) 113.9cm α-particle consi (a) 2 electrons, (c) 2 protons or In a double slit	lent of increase in temperat (b) 88cm ists of 2 protons and 2 neutrons ally experiment, when light of	nium rod of unknown length have their increase in perature. The length of aluminium rod is (c) 68cm (d) 6.8cm ons (b) 2 electrons and 4 protons only (d) 2 protons and 2 neutrons only at of wavelength 400nm was used, the angular width		
	of the first minima formed on a screen placed 1m away, was found to be 0.2° . What wi be the angular width of the first minima, if the entire experimental apparatus is immerse in water? ($\mu_{water} = 4/3$).				
	(a) 0.15°	(b) 0.051°	(c) 0.1°	(d) 0.266°	