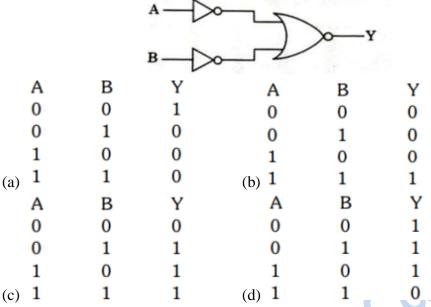
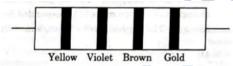
NEET 2020


(PHYSICS)

The phase difference between displacement and acceleration of a particle in a simple


1.

	harmonic motion is						
	(a) $3\pi/2$ rad	(b) π /2 rad	(c) zero	(d) π rad			
2.	A long solenoid of 50	Ocm length having 100	turns carries a current	of 2.5A. The magnetic			
field at the centre of solenoid is							
	(a) 3.14×10^{-4} T	(b) 6.28×10^{-5} T	(c) 3.14×10^{-5} T	(d) 6.28×10^{-4} T			
3.	Two bodies of mass 4	4kg and 6kg are tied to	the ends of massless s	string. The string passes			
	over a pulley which is frictionless (see fig). The acceleration of the system in terms of						
	acceleration due to gr	ravity g is					
		\odot		J			
		\mathcal{M}	, C O				
		4kg 📥					
			6kg				
	(a) $g/2$	(b) $g/5$	(c) $g/10$	(d) g			
4.	The ratio of contribut	tions made by the elect	ric field and magnetic	field components to the			
	intensity of an electro	omagnetic wave is (wh	ere c = speed of electronsists	omagnetic waves)			
	(a) 1:1	(b) 1:c	(c) $1:c^2$	(d) c:1			
5.	•		-	ntial is found to be 5V			
	= =	nitude of electric field	=				
	(a) 0.5N/C	(b) 1N/C	(c) 5N/C	(d) zero			
6.	The average thermal energy for a monoatomic gas is (where k_B is Boltzmann constant						
	and T is absolute tem		(a) 7/2 lz T	(d) 1/2 l ₂ T			
_	(a) $3/2 k_B T$	(b) $5/2 k_BT$	(c) $7/2 k_BT$	(d) $1/2 k_B T$			
7.	Find the torque about the origin when a force of 3 \hat{j} N acts on the particle whose position						
	vector is 2 k m.						
	(a) 6 j N-m	(b) $- 6 \hat{i} N-m$	(c) 6 \hat{k} N-m	(d) 6 i N-m			
8.	The mean free path 2	λ for a gas with molec	cular diameter d and n	umber density n can be			
	expressed as						
	(a) $\frac{1}{\sqrt{2}n\pi d^2}$	(b)1	(c) <u>1</u>	(d) $\frac{1}{d}$			
	$\sqrt{2}$ n π d ²	$(b) \frac{1}{\sqrt{2}n^2\pi d^2}$	$\sqrt{2}n^2\pi^2d^2$	(d) $\frac{1}{\sqrt{2}n\pi d}$			
9.	The energy equivalent	nt of 0.5g of a substanc	e is				
	(a) $4.5 \times 10^{13} J$	(b) 1.5×10^{13} J	(c) 0.5×10^{13} J	(d) $4.5 \times 10^{16} J$			
10.	A screw gauge has le	screw gauge has least count of 0.01mm and there are 50 divisions in its circular s					
	The pitch of the screw gauge is						
	(a) 0.25mm	(b) 0.5mm	(c) 1.0mm	(d) 0.01mm			

11.	Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is						
	(a) adiabatic	(b) isochoric	(c) isobaric	(d) isothermal			
12.	A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27°C. Its density is $(R = 8.3 \text{J mol}^{-1} \text{ k}^{-1})$						
	(a) 0.2 kg/m^3	(b) 0.1 kg/m^3	(c) 0.02 kg/m^3	(d) 0.5 kg/m^3			
13.	When a uranium isotope ${}^{235}_{92}$ U is bombarded with a neutron, it generates ${}^{89}_{36}$ Kr, three						
	neutrons and						
	(a) $^{91}_{40}$ Zr	(b) $^{101}_{36}$ Kr	(c) $_{36}^{103}$ Kr	(d) $_{56}^{144}$ Ba			
14.	A charged particle l Vm ⁻¹ , has a mobility	having drift velocity of (in m ² V ⁻¹ s ⁻¹) of	of $7.5 \times 10^{-4} \text{ ms}^{-1}$ in an	electric field of 3×10 ⁻¹⁰			
1.5	(a) 2.5×10^6	(b) 2.5×10^{-6}	(c) 2.25×10^{-15}				
15.	•	•	res, what is the value of				
16.	(a) 9.98m	(b) 9.980m	(c) 9.9m	(d) 9.9801m Fold of 1200 Am ⁻¹ The			
10.		An iron rod of susceptibility 599 is subjected to a magnetizing field of 1200 Am ⁻¹ . The permeability of the material of the rod is (take $\mu_0 = 4\pi \times 10^{-7} \text{ TmA}^{-1}$)					
	=			(d) $2.4\pi \times 10^{-4} \text{ TmA}^{-1}$			
17.	• *	` ' · ' · · · · · · · · · · · · · · · ·		• /			
17.	A spherical conductor of radius 10cm has a charge of 3.2×10^{-7} C distributed uniformly. What is the magnitude of electric field at a point 15cm from the centre of the sphere?						
	(Take $1/4 \pi \varepsilon_0 = 9 \times 10^{-1}$		u point 13cm from th	ie centre of the sphere.			
			(c) $1.28 \times 10^8 \text{N/C}$	(d) 1.28×10^4 N/C			
18.				L is removed from the			
	circuit, the phase difference between current and voltage is $\pi/3$. If instead C is removed						
	from the circuit, the phase difference is again π /3 between current and voltage. The						
	power factor of the circuit is						
	(a) 0.5	(b) 1.0	(c) - 1.0	(d) zero			
19.	A capillary tube of	radius r is immersed in	n water and water rises	in it to a height h. The			
	mass of the water in the capillary tube is 5g. Another capillary tube of radius 2r is						
	immersed in water.	The mass of water that	will rise in this tube is				
	(a) 5.0g	(b) 10.0g	(c) 20.0g	(d) 2.5g			
20.	In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes						
	(a) half	(b) four times	(c) one-fourth	(d) double			
21.		shown, the truth table		. ,			
	_						

22. The color code of a resistance is given below:

The values of resistance and tolerance respectively are

- (a) $47k\Omega$, 10%
- (b) $4.7k\Omega$, 5%
- (c) 470Ω , 5%
- (d) $470k\Omega$, 5%
- 23. The capacitance of a parallel plate capacitor with air as medium is $6\mu F$. With the introduction of a dielectric medium, the capacitance becomes $30\mu F$. The permittivity of the medium is $(\epsilon_0 = 8.85 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2})$
 - (a) $1.77 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$

(b) $0.44 \times 10^{-10} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$

(c) $500C^2N^{-1}m^{-2}$

- (d) $0.44 \times 10^{-13} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$
- 24. A ball is thrown vertically downward with a velocity of 20 m/s from the top of a tower. It hits the ground after sometime with a velocity of 80 m/s. The height of the tower is $(g = 10 \text{ m/s}^2)$
 - (a) 340m
- (b) 320m
- (c) 300m
- (d) 360m
- 25. A body weighs 72N on the surface of the earth. What is the gravitational force on it, at a height equal to half of radius of the earth?
 - (a) 32N
- (b) 30N
- (c) 24N
- (d) 48N
- 26. Two particles of mass 5kg and 10kg respectively are attached to the two ends of a rigid rod of length 1m with negligible mass. The centre of mass of the system from the 5kg particle is nearly at a distance of
 - (a) 50cm
- (b) 67cm
- (c) 80cm
- (d) 33cm
- 27. The increase in the width of the depletion region in a pn junction diode is due to
 - (a) reverse bias only

- (b) both forward and reverse bias
- (c) increase in forward current
- (d) forward bias only

28.	Light of frequency 1.5times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled?					
	(a) four times	(b) one-fourth	(c) zero	(d) doubled		
29.	` '	` '	` '	, ,		
	Assume that light of wavelength 600nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2m is					
	(a) 1.83×10^{-7} rad		(c) 6.00×10^{-7} rad	(d) 3.66×10^{-7} rad		
30.	• *					
20.	A resistance wire connected in the left gas of a metre bridge balances a 10Ω resistance in the right gap at a point which divides the bridge wire in the ratio 3:2. If the length of th resistance wire is 1.5m. Then the length of 1Ω of the resistance wire is					
	(a) 10×10^{-1} m	(b) 1.5×10^{-1} m	(c) 1.5×10^{-2} m	(d) 1.0×10^{-2} m		
31.	=	=		ting surface at normal		
	incidence having surface area 20cm ² . The energy received by the surface during time					
	span of 1 min is	4) 24 4037	() 10 1037	(1) 10, 1037		
22	(a) $12 \times 10^3 \text{J}$	(b) $24 \times 10^3 \text{J}$	(c) $48 \times 10^3 \text{J}$	(d) $10 \times 10^3 J$		
32.		_		small angle prism (with		
		•		e. If the refractive index		
	of the material of the	prism is μ , then the ar	ngle of incidence is nea	rly equal to		
	(a) $2A/\mu$	(b) μ A	(c) μ A/2	(d) A/2 μ		
33.	A 40 μ F capacitor	is connected to a 20	OV, 50HZ AC supply.	The rms value of the		
	current in the circuit is, nearly					
	(a) 2.05A	(b) 2.5A	(c) 25.1A	(d) 1.7A		
34.	Dimensions of stress					
	(a) $[ML^2 T^{-2}]$	(b) $[ML^0 T^{-2}]$	(c) $[ML^{-1} T^{-2}]$	$(d) [MLT^{-2}]$		
35.		e i _b for an interface sho				
	(a) $30^{\circ} < i_b < 45^{\circ}$	(b) $45^{\circ} < i_b < 90^{\circ}$	(c) $i_b = 90^{\circ}$	(d) $0^{\circ} < i_b < 30^{\circ}$		
36.				d support. The length of		
	the wire change to L ₁ when mass M is suspended from its free end. The expression for					
	Young's modulus is					
	(a) $\frac{Mg(L_1 - L)}{AL}$	(b) $\frac{\text{MgL}}{\text{AL}_1}$	(c) $\frac{\text{MgL}}{\text{A}(\text{L}_1 - \text{L})}$	(d) $\frac{\text{MgL}_1}{\text{AL}}$		
37.	A short electric dipo	le has a dipole momen	t of 16×10 ⁻⁹ C-m. The	electric potential due to		
	the dipole at a point at a distance of 0.6m from the centre of the dipole situated on a line					
	making an angle of 60° with the dipole axis is $(1/4 \pi \epsilon_0 = 9 \times 10^9 \text{ Nm}^2\text{C}^{-2})$					
	(a) 200V	(b) 536V	(c) 537V	(d) 523V		
38.		` '	of same material are si	lightly out of tune and		
	produce beats of frequency 6Hz. When the tension in B is slightly decreased the beat					
	frequency increases to 7Hz. If the frequency of A is 530Hz, the original frequency fo I					
	will be	1	•	<u> </u>		
	(a) 524Hz	(b) 536Hz	(c) 537Hz	(d) 523Hz		
	. /	• /	• /	• •		

39. An electron is accelerated from rest through a potential difference of V volt. If the de-Broglie wavelength of the electron is 1.227×10^{-2} nm, the potential difference is (a) 10^2 V (b) 10^3 V (c) $10^4 V$ (d) 10V 40. The solids which have the negative temperature coefficient of resistance are (b) semiconductors only (a) insulator only (c) insulators and semiconductors only (d) metals The energy required to break one bond in DNA is 10⁻²⁰J. This value (in eV) is nearly 41. (b) 0.06(c) 0.006(d) 6(a) 0.6 The quantities of heat required to raise the temperature of two solid copper spheres of 42. radii r_1 and r_2 ($r_1 = 1.5r_2$) through 1K are in the ratio (a) 9/4(b) 3/2(c) 5/3(d) 27/8Which of the following graph represents the variation of resistivity (ρ) with temperature 43. (T) for copper? (b) (c) (d) (a) 44. For transistor action, which of the following statements is correct? (a) base, emitter and collector regions should have the same size (b) both emitter junction as well as the collector junctions are forward biased (c) the region must be very thin and lightly doped

- (a) single ionized helium atom (He⁺)
- (b) Deutron atom
- (c) Singly ionized neon atom (Ne⁺)
- (d) Hydrogen atom