Physics Master Academy Only Teaching Noting Else.

Class X Mathematics (Standard) SQP Marking Scheme (2019-20)

Section-A					
1	(c) 3 decimal places	1			
2	(a) 165	1			
3	(c) 20	1			
4	(a) all real values except 10	1			
5	(d) not defined	1			
6	(a) $\sqrt{2} - 1$	1			
7	(d) 30°	1			
8	(d) IV quadrant	1			
9	(c) 4	1			
10	(a) -12	1			
11	$\pi r l + 2\pi r h + \pi r^2$	1			
12	4	1			
	OR 1				
	5	ı			
13	49 : 81	1			
14	14, 38	$\frac{1}{2} + \frac{1}{2}$			
15	3 11	1			
16	Rational number= 0.30	1_			
		2			
	Irrational number = 0.3010203040	$\frac{1}{2}$			
		2			
	Or any other correct rational and irrational number				
17	ΔACB~ΔADC (AA criterion)	1 2			

	$\Rightarrow \frac{AC}{AD} = \frac{AB}{AC}$	1 -	
	AD AC	2	
	∴ AB = 12 cm		
18	B P		
	In $\triangle OBP_{,\frac{OB}{OP}} = \sin 30^{\circ}$ $\therefore OP = 2r$	1 2 1 2	
	OR	2	
	Length of Tangent = $2 \times \sqrt{5^2 - 4^2} = 2 \times 3 \ cm = 6 \ cm$	$\frac{1}{2} + \frac{1}{2}$	
19	$b, c \text{ and } 2b \text{ are in A.P} \Rightarrow c = \frac{3b}{2}$	$\frac{1}{2}$	
	$\therefore b:c=2:3$	$\frac{1}{2}$	
20	$D = (2\sqrt{2}k)^2 - 4(1)(18) = 0 \Rightarrow k = \pm 3$	$\frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
	Section-B		
21	110, 120, 130,, 990 $a_n = 990 \Rightarrow 110 + (n-1) \times 10 = 990$ $\therefore n = 89$	1	
22	D R C AP = AS, BP= BQ, CR= CQ and DR= DS \Rightarrow AP + BP + CR + DR = AS + BQ + CQ + DS Q \Rightarrow AB + CD = AD + CB But AB = CD and AD = CB \therefore AB = AD Hence, ABCD is a square.	1	
23	$\Delta ADE \sim \Delta GBD$ and $\Delta ADE \sim \Delta FEC$ $\Rightarrow \Delta GBD \sim \Delta FEC$ (AA Criterion)	1	
	$\Rightarrow \frac{GD}{FC} = \frac{GB}{FE} \Rightarrow GD \times FE = GB \times FC \text{ or } FG^2 = BG \times FC$	1	
	OR		

	A	
	B D C	1 -
	$AD \perp BC : \ln \Delta ABD, AB^2 = AD^2 + BD^2$	1
	$\Rightarrow AB^2 = AD^2 + \frac{BC^2}{4} \text{ or } 4AB^2 = 4AD^2 + BC^2$	1/2 1/2 2/2
	$\Rightarrow 3AB^2 = 4AD^2$	
24	(i) $\cos(90^{\circ} - \theta) = \cos(3\theta - 30^{\circ})$	
	$\Rightarrow 90^{\circ} - \theta = 3\theta - 30^{\circ} \Rightarrow \theta = 30^{\circ}$	1
	(ii) $\frac{AB}{AC} = \sin 30^{\circ}$ \therefore Length of rope = $AC = 400 m$	1
25	For Jayanti,	
	Favourable outcome is (6,6) i.e, 1	4
	Probability(getting the number 36) = $\frac{1}{36}$	1
	For Pihu,	1
	Favourable outcome is 6 i.e, 1	
	Probability(getting the number 36) = $\frac{1}{6}$	1
	∴ Pihu has the better chance.	1
	OR	
	Total number of integers = 29	
	(i) Prob.(prime number) = $\frac{6}{29}$	
	(ii) Prob.(number divisible by 7) = $\frac{4}{29}$	

26	Capacity of first glass = $\pi r^2 H - \frac{2}{3} \pi r^3$					
	$= \pi \times 9(10-2) = 72\pi cm^3$	1				
	$= \pi \times 9(10-2) = 72\pi cm^{2}$					
	Capacity of second glass = $\pi r^2 H - \frac{1}{3}\pi r^2 h$	1				
	$= \pi \times 3 \times 3(10 - 0.5) = 85.5\pi cm^3$					
	∴Sureshgot more quantity of juice.					
	Hourestigot more quantity of juice.					
	Section - C					
	Section - C					
27	Let us assume, to the contrary, that $2\sqrt{5} - 3$ is a rational number					
	$\therefore 2\sqrt{5} - 3 = \frac{p}{q}$, where p and q are integers and $q \neq 0$	1				
	9					
	$\Rightarrow \sqrt{5} = \frac{p+3q}{2q}(1)$					
	Since p and q are integers $\therefore \frac{p+3q}{2q}$ is a rational number					
	∴ $\sqrt{5}$ is a rational number which is a contradiction as $\sqrt{5}$ is an irrational number Hence our assumption is wrong and hence $2\sqrt{5} - 3$ is an irrational					
	number.					
	OR	2				
	$180 = 144 \times 1 + 36$					
	$144 = 36 \times 4 + 0$	1				
	∴ HCF(180, 144) = 36					
	36 = 13m - 16					
	Solving, we get $m = 4$					
28	$S_m = S_n \Rightarrow \frac{m}{2} [2a + (m-1)d] = \frac{n}{2} [2a + (n-1)d]$	1				
	$\Rightarrow 2a(m-n) + d(m^2 - m - n^2 + n) = 0$	1				
	\Rightarrow (m - n)[2a + (m + n - 1)d] = 0 or $S_{m+n} = 0$	1				
29	x + y = 7 and $2(x - y) + x + y + 5 + 5 = 27$	1 , 1				
27	x + y = 7 and $2(x - y) + x + y + 5 + 5 = 27$	$\frac{1}{2} + 1$				
	x + y = 7 and $3x - y = 17$	$\frac{1}{2}$				
		_				
	Solving, we get, $x = 6$ and $y = 1$	1				

	OR			
	Let $\frac{1}{x} = a$ and $\frac{1}{y} = b$			
	\Rightarrow 21a + 47 b = 110 and 47a + 21b = 162	1		
	Adding and subtracting the two equations, we get	1		
	a+b=4 and $a-b=2$	1		
	Solving the above two equations, we get $a = 3$ and	•		
	b = 1 $\therefore x = \frac{1}{3} \text{ and } y = 1$ $p(x) = x^4 + 4x^3 - 2x^2 - 20x - 15$			
30	$p(x) = x^4 + 4x^3 - 2x^2 - 20x - 15$ $x^2 - 5$ is factor of $p(x)$			
	$\therefore p(x) = (x^2 - 5)(x^2 + 4x + 3)$	2		
	Or $p(x) = (x^2 - 5)(x + 3)(x + 1)$	1		
	So, all the zeroes of $p(x)$ are $\sqrt{5}$, $-\sqrt{5}$, -3 and -1			
31	(i) A(1,7), B(4,2) C(-4,4) Distance travelled by Seema = $\sqrt{34}$ units			
	Distance travelled by Aditya = $\sqrt{68}$ units	1		
	∴ Aditya travels more distance			
	(ii) Coordinates of D are $\left(\frac{1+4}{2}, \frac{7+2}{2}\right) = \left(\frac{5}{2}, \frac{9}{2}\right)$	1		
	(iii) $ar(\Delta ABC) = \frac{1}{2}[1(2-4) + 4(4-7) - 4(7-2)]$			
	= 17 sq. units	1		
32	$\sin\theta + \cos\theta = \sqrt{3} \Rightarrow (\sin\theta + \cos\theta)^2 = 3$	1		
	$\Rightarrow 1 + 2\sin\theta\cos\theta = 3 \Rightarrow \sin\theta\cos\theta = 1$ $\therefore \tan\theta + \cot\theta = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 1$			
	$\cos \theta - \sin \theta$	1		

	OR			
	$\frac{\cos^2(45^\circ + \theta) + \cos^2(45^\circ - \theta)}{\tan(60^\circ + \theta) \times \tan(30^\circ - \theta)} + (\cot 30^\circ + \sin 90^\circ) \times (\tan 60^\circ - \sec 0^\circ)$			
	$= \frac{\cos^2(45^\circ + \theta) + \sin^2(45^\circ + \theta)}{\tan(60^\circ + \theta) \times \cot(60^\circ + \theta)} + (\sqrt{3} + 1) \times (\sqrt{3} - 1)$	2		
	= 1 + 2 = 3	1		
33	Required Area = Area of triangle - Area of 3 sectors	_		
	Area of Triangle = $\frac{1}{2} \times 24 \times 7 = 84 m^2$	1		
	Area of three sectors = $\frac{\pi r^2}{360^{\circ}} \times \text{(sum of three angles of triangle)}$	1		
	$= \frac{22 \times 7 \times 7 \times 180^{\circ}}{7 \times 2 \times 2 \times 360^{\circ}} = \frac{77}{4} \text{ or } 19.25 m^2$			
	$7 \times 2 \times 2 \times 360$ 4	1		
	$\therefore \text{ Required Area} = \frac{259}{4} \text{ or } 64.75 m^2$			
34	(i) Curve 1 - Less than ogive, Curve2 - More than ogive	1		
	(ii) Median Rainfall = 21 cm	1		
	(iii) 3 Median = Mode + 2 mean	1		
	∴ Mode = 16.2 cm	'		
	Section-D			
35	Correct construction of given triangle	1		
	Correct construction of similar Δ with scale factor $\frac{3}{4}$	3		
	OR			
	Correct construction of given circle	_		
	Correct construction of two tangents	1 3		
) 		
36	For correct given, to prove, const. and figure	$(4 \times \frac{1}{2}$ $= 2)$		
		2		
	For correct proof	_		
37	Let the original speed of the train be $x \text{ km/h}$			
	$\therefore \frac{360}{1} - \frac{360}{1} = \frac{48}{1}$	2		
	$\therefore \frac{360}{x} - \frac{360}{x+5} = \frac{48}{60}$ $\Rightarrow x^2 + 5x - 2250 = 0$	1		

	$\Rightarrow (x + 50)(x - 45) = 0 \therefore x = 45$	1
	Hence original speed of the train = 45km/h	
	OR	
	$\frac{1}{x} - \frac{1}{x-2} = 3$	1
	$\frac{x-2-x}{x(x-2)} = \frac{3}{1}$	1
	$3x^2 - 6x = -2$	
	$3x^2 - 6x + 2 = 0$	1
	$x = \frac{6 \pm \sqrt{12}}{6}$	1
	$=\frac{3+\sqrt{3}}{3}, \frac{3-\sqrt{3}}{3}$	
38	Capacity of tank = $\frac{1}{3}\pi \times 20 \times (10^2 + 25^2 + 10 \times 25)m^3$ = $\pi \times 20 \times 325m^3 = \pi \times 20 \times 325 l$	$1\frac{1}{2}$
	Cost of petrol = π × 20 × 325 × 70 = ₹1430000	1 2
	Slant height = $\sqrt{20^2 + (25 - 10)^2} = 25m$	1
	Surface area of tank = $\pi \times 25(10 + 25)m^2 = 2750m^2$	1
	OR	
		2
	Quantity of water flowing through pipe in 1 hour $= \pi \times \frac{7}{100} \times \frac{7}{100} \times 15000m^{3}$ Required time = $\left(50 \times 44 \times \frac{21}{100}\right) \div \left(\pi \times \frac{7}{100} \times \frac{7}{100} \times 15000\right)$ = 2 hours	2

39						
	60° 30° C					
						1
	Correct figure					4
	In $\triangle ABE$, $\frac{BE}{AB} = $ ta	an 60˚				1
	\Rightarrow AB = 300					1
	In ΔDAC , $\frac{-}{A}$ $\Rightarrow AC = 900$	$\frac{c}{c}$ = tan 30°				1
	⇒ AC = 900	OTII				$\frac{1}{2}$
	BC = AC - AB = 6	000m				2
	∴ Speed of aeroplane = $\frac{6000}{30}m/s = 200m/s$					
	- Opeod of delep	30	2001111	5		
40	Daily	Number of	x_i	u_i	$f_i u_i$	
	Wages(in	Workers (f_i)				
	Rs.)					
	100-120	10	110	-3	-30	
	120-140	15	130	-2	-30	
	140-160	20	150	-1	-20	
	160-180	22	170	0	0	
	180-200	18	190	1	18	
	200-220	12	210	2	24	2
	220-240	13	230	3	39	_
	Total	110			1	1
	170 1 20 5170 100					
	Mean daily wages = $170 + \frac{1}{110} \times 20 = ₹170.19$ (approx.)					1
	Mode = $160 + \frac{22-20}{44-20-18} \times 20 = ₹ 166.67 (approx.)$					