Physics Master Academy Only Teaching Noting Else.

Class- X

Mathematics-Basic (241)

Marking Scheme SQP-2020-21

Max. Marks: 80 Duration:3hrs

		14
1	$156 = 2^2 \times 3 \times 13$	1
2	Quadratic polynomial is given by x²- (a +b) x +ab x²-2x -8	1
3	HCF X LCM =product of two numbers	1/2
	$LCM (96,404) = \frac{96 \times 404}{HCF(96,404)} = \frac{96 \times 404}{4}$	1/2
	LCM = 9696	
	OR	
	Every composite number can be expressed (factorized) as a product of primes, and this factorization is unique, apart from the order in which the factors occur.	1
4	x - 2y = 0	
	3x + 4y - 20 = 0	
	$\frac{1}{3} \neq \frac{-2}{4}$	1/2
	As, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ is one condition for consistency.	
	Therefore, the pair of equations is consistent.	1/2
5	1	1
6	e = 60°	
	Area of sector $=\frac{\theta}{360^{\circ}} \Pi r^2$	1/
	$A = \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times (6)^{2} \text{ cm}^{2}$	1/2
	$A = \frac{1}{6} X \frac{22}{7} X36 \text{ cm}^2$	
	$= 18.86 \text{cm}^2$	1/2

	OR	
	Another method- Horse can graze in the field which is a circle of radius 28 cm. So, required perimeter = $2\Pi r= 2.\Pi(28)$ cm = $2 \times \frac{22}{7} \times (28)$ cm = 176 cm	1/2
7	By converse of Thale's theorem DE II BC	1/2
	70° + 50° + ∟BCA = 180° ∟BCA = 180° - 120° = 60°	1/2
	OR	
	EC = AC – AE = (7- 3.5) cm = 3.5 cm $\frac{AD}{BD} = \frac{2}{3}$ and $\frac{AE}{EC} = \frac{3.5}{3.5} = \frac{1}{1}$ So, $\frac{AD}{BD} \neq \frac{AE}{EC}$	1/2
	Hence, By converse of Thale's Theorem, DE is not Parallel to BC.	1/2
8	Length of the fence = $\frac{Total cost}{Rate}$ = $\frac{Rs.5280}{Rs 24/metre}$ = 220 m So, length of fence = Circumference of the field \therefore 220m= 2 Π r=2 $\times \frac{22}{7}$ x r	1/2
	So, $r = \frac{220 \times 7}{2 \times 22} \text{ m} = 35 \text{ m}$	1/2
9	A 30 C	
	Sol: $\tan 30^\circ = \frac{AB}{BC}$ $1/\sqrt{3} = \frac{AB}{8}$	1/2
	AB = 8 / $\sqrt{3}$ metres Height from where it is broken is 8/ $\sqrt{3}$ metres	1/2

10	Perimeter = Area	1
	$2\Pi r = \Pi r^2$ $r = 2 \text{ units}$	
11	3 median = mode + 2 mean	1
11	3 median = mode + 2 mean	I
12	8	1
13		1/2
13	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ is the condition for the given pair of equations to have unique solution.	/2
	$\frac{4}{2} \neq \frac{p}{2}$	
	p ≠4	1/2
	Therefore, for all real values of p except 4, the given pair of equations will have a unique solution.	,,,
	OR	
	Here, $\frac{a1}{a2} = \frac{2}{4} = \frac{1}{2}$	
	$\frac{b1}{b2} = \frac{3}{6} = \frac{1}{2}$ and $\frac{c1}{c2} = \frac{5}{7}$	
	$\frac{1}{2} = \frac{1}{2} \neq \frac{5}{7}$	
	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ is the condition for which the given system of equations will represent parallel lines.	1/2
	So, the given system of linear equations will represent a pair of parallel lines.	1/2
14	No. of red balls = 3, No.black balls =5 Total number of balls = 5 + 3 =8	1/2
	Probability of red balls = $\frac{3}{8}$	1/2
	OR	
	Total no of possible outcomes = 6	1/2
	There are 3 Prime numbers, 2,3,5.	1/2
	So, Probability of getting a prime number is $\frac{3}{6} = \frac{1}{2}$	

15		
	A h B 15 m	1/2
	$\tan 60^\circ = \frac{h}{15}$ $\sqrt{3} = \frac{h}{15}$	
	$h = 15\sqrt{3} \text{ m}$	1/2
16	1	1
17 i)	Ans : b) Cloth material required = 2X S A of hemispherical dome $= 2 \times 2\Pi r^{2}$ $= 2 \times 2x \frac{22}{7} \times (2.5)^{2} m^{2}$ $= 78.57 m^{2}$	1
ii)	a) Volume of a cylindrical pillar = Π r²h	1
iii)	b) Lateral surface area = 2x 2Πrh = 4 x ²² / ₇ x 1.4 x 7 m ² = 123.2 m ²	1
iv)	d) Volume of hemisphere $=\frac{2}{3} \Pi r^3$ = $\frac{2}{3} \frac{22}{7} (3.5)^3 m^3$ = 89.83 m ³	1
v)	b)	
	Sum of the volumes of two hemispheres of radius 1cm each= $2 \times \frac{2}{3} \Pi 1^3$ Volume of sphere of radius 2cm = $\frac{4}{3} \Pi 2^3$	1/2
	So, required ratio is $\frac{2 \times \frac{2}{3} \Pi 1^{3}}{\frac{4}{3} \Pi 2^{3}} = 1:8$	1/2
		I.

18 i)	c) (0,0)	1
ii)	a) (4,6)	1
iii)	a) (6,5)	1
iv)	a) (16,0)	1
v)	b) (-12,6)	1
19 i)	c) 90°	1
ii)	b) SAS	1
iii)	b) 4:9	1
iv)	d) Converse of Pythagoras theorem	1
v)	a) 48 cm ²	1
20 i)	d) parabola	1
ii)	a) 2	1
iii)	b) -1, 3	1
iv)	c) $x^2 - 2x - 3$	1
v)	d) 0	1
21	Let P(x,y) be the required point. Using section formula	
	$\left\{\frac{m 1x2 + m2x1}{m1 + m2}, \frac{m1y2 + m2y1}{m1 + m2}\right\} = (X, Y)$ $= (X, Y)$ $= (X, Y)$ $= (X, Y)$ $= (X, Y)$	1
	$x = \frac{3(8)+1(4)}{3+1}$, $y = \frac{3(5)+1(-3)}{3+1}$ x = 7 $y = 3(7,3) is the required point$	1

	OR	
	Let P(x, y) be equidistant from the points A(7,1) and B(3,5) Given AP =BP. So, $AP^2 = BP^2$	1
	$(x-7)^2 + (y-1)^2 = (x-3)^2 + (y-5)^2$ $x^2 -14x+49 + y^2-2y + 1 = x^2-6x + 9+y^2-10y+25$ $x - y = 2$	1
22	By BPT, $\frac{AM}{MB} = \frac{AL}{LC} \qquad(1)$	1/2
	Also, $\frac{AN}{ND} = \frac{AL}{LC}$ (2)	1/2
	By Equating (1) and (2) $\frac{AM}{MB} = \frac{AN}{ND}$	1
23	To prove: AB + CD = AD + BC. DRC SAPE	
	Proof: AS = AP (Length of tangents from an external point to a circle	1
	are equal) BQ = BP CQ = CR DS = DR AS + BQ + CQ + DS = AP + BP + CR + DR (AS+ DS) + (BQ + CQ) = (AP + BP) + (CR + DR) AD + BC = AB + CD	1
24	For the correct construction	2

25	15 cot A =8, find sin A and sec A.	
	Cot A =8/15	1
	C 15x B 8x	
	$\frac{Adj}{Oppo}$ =8/15 By Pythagoras Theorem	
	AC ² =AB ² +BC ² AC = $\sqrt{(8x)^2 + (15x)^2}$ AC= 17x	1/2
	Sin A = 15/17 Cos A =8/17	1/2
	OR	
	By Pythagoras Theorem $ {\sf QR} = \sqrt{(13)^2 - (12)^2} \ {\sf cm} $ $ {\sf QR} = 5 {\sf cm} $	1
	Tan P =5/12 Cot R =5/12 Tan P -Cot R =5/12 -5/12 = 0	1
26	$9,17,25, \dots$ $S_{n} = 636$ $a = 9$ $d = a_2 \cdot a_1$ $= 17 - 9 = 8$	1/2
	$S_n = \frac{n}{2} [2a + (n-1) d]$ $S_n = \frac{n}{2} [2a + (n-1) d]$	1/2

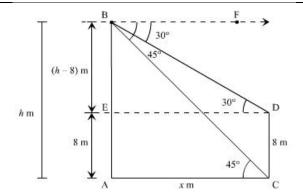
	$636 = \frac{n}{2} [2x 9 + (n-1) 8]$	
	1272 = n [18 + 8n -8]	
	1272 = n [10 +8n]	
	8n ² +10n -1272 =0	
	$4n^2 + 5n - 636 = 0$	
	$-b\pm\sqrt{b^2-4ac}$	1/2
	$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$n = \frac{-5 \pm \sqrt{5^2 - 4x} 4x(-636)}{2x4}$	
	$\Pi = {2x4}$	
	$n = -\frac{-5 \pm 101}{8}$	
	n_{-}^{96}	
	$n = \frac{96}{8}$ $n = \frac{-106}{8}$ $n = -\frac{-53}{4}$	
	$n=12$ $n=-\frac{-53}{4}$	
		1/2
	n=12 (since n cannot be negative)	
	,	
27	Let $\sqrt{3}$ be a rational number.	
	Then $\sqrt{3} = p/q$ HCF $(p,q) = 1$	1
	Squaring both sides	
	$(\sqrt{3})^2 = (p/q)^2$	
	$3 = p^2/q^2$	
	$3q^2 = p^2$	
	3 divides p ² » 3 divides p	
	3 is a factor of p	
	Take $p = 3C$	1/2
	$3q^2 = (3c)^2$, -
	$3q^2 = 9C^2$	
	3 divides q ² » 3 divides q	1/2
	3 is a factor of q	, -
	Therefore 3 is a common factor of p and q	
	It is a contradiction to our assumption that p/q is rational.	1
	Hence √3 is an irrational number.	-
28		
20	T (\ ₀)	

	Required to prove -: ∟PTQ = 2∟OPQ	1
	Sol:-Let ∟PTQ = e	
	Now by the theorem $TP = TQ$. So, TPQ is an isosceles triangle	4
	_ TPQ = _ TQP = ½ (180° -ө)	1
	= 90° - ½ 0	1/
	□ OPT = 90°	1/2
	∟OPQ = ∟OPT - ∟TPQ =90° - (90° - ½ θ)	
	= ½ θ	17
	= ½ ∟PTQ	1/2
	∟PTQ = 2∟OPQ	
29	Let Meena has received x no. of 50 re notes and y no. of 100 re	1
	notes.So,	
	50 x + 100 y =2000	
	x + y =25	
	multiply by 50	
		1
	50x + 100y = 2000	
	$50 \times + 50 \text{ y} = 1250$	
	50y =750	
	Y= 15	
		1
	Putting value of y=15 in equation (2)	
	x+ 15 =25	
	x = 10	
	Meena has received 10 pieces 50 re notes and 15 pieces of 100 re	
	notes	
30	(i) 10,11,1290 are two digit numbers. There are 81	
	numbers.So,Probability of getting a two-digit number	1
	= 81/90 = 9/10	
	(ii) 1, 4, 9,16,25,36,49,64,81 are perfect squares. So,	1
	Probability of getting a perfect square number.	
	= 9/90 =1/10	
	(iii) 5, 10,1590 are divisible by 5. There are 18 outcomes	1
	So, Probability of getting a number divisible by 5.	
I .		

	OR	
	(i) Probability of getting A king of red colour.	1
	P (King of red colour) = 2/52 = 1/26	
	(ii) Probability of getting A spade P (a spade) = 13/52 = 1/4	1
	(iii) Probability of getting The queen of diamonds P (a the queen of diamonds) = 1/52	1
31	$r_1 = 6$ cm $r_2 = 8$ cm	
	r_{3} = 10cm	1
	Volume of the resulting sphere = Sum of the volumes of the smaller spheres.	1
	$r = \sqrt[3]{1728}$ $r = 12 \text{ cm}$ Therefore, the radius of the resulting sphere is 12cm.	1
32	(sin A-cos A+1)/ (sin A+cosA-1) = 1/(sec A-tan A)	
	L.H.S. divide numerator and denominator by cos A	
	= (tan A-1+secA)/ (tan A+1-sec A)	1
	= (tan A-1+secA)/(1-sec A + tan A)	
	We know that 1+tan ² A=sec ² A	1
	Or $1=\sec^2 A - \tan^2 A = (\sec A + \tan A)(\sec A - \tan A)$	
	=(sec A + tan A-1)/[(sec A + tan A)(sec A-tan A)-(sec A-tan A)]	
	=(sec A + tan A-1)/(sec A-tan A)(sec A + tan A-1)	1

	= 1/(sec A-tan A) , proved.	
33	Given:-	
	Speed of boat =18km/hr Distance =24km	
	Let <i>x</i> be the speed of stream. Let <i>t</i> 1 and <i>t</i> 2 be the time for upstream and downstream. As we know that,	1/2
	speed= distance / time ⇒time= distance / speed	
	For upstream, Speed =(18-x) km/hr Distance =24km Time =t1 Therefore,	1/2
	$t_1 = \frac{24}{18 - x}$	
	For downstream, Speed =(18+x)km/hr Distance =24km Time =t2 Therefore,	
	$t_2 = \frac{24}{18 + x}$ Now according to the question-	
	t1=t2+1	
	$\frac{24}{18-x} = \frac{24}{18+x} + 1$	
	$\Rightarrow \frac{24(18+x)-24(18-x)}{(18-x)(18+x)} = 1$	1/2
	$\Rightarrow 48x = (18-x)(18+x)$	
	$\Rightarrow 48x = 324 + 18x - 18x - x^2$	
	$\Rightarrow x^{2}+48x-324=0$ $\Rightarrow x^{2}+54x-6x-324=0$ $\Rightarrow x(x+54)-6(x+54)=0$ $\Rightarrow (x+54)(x-6)=0$	

\Rightarrow x=-54 or x=6	1/2
Since speed cannot be negative.	
⇒x=-54 will be rejected	
∴ <i>x</i> =6	
Thus, the speed of stream is 6km/hr.	1
OR	
Let one of the odd positive integer be x	
then the other odd positive integer is $x+2$ their sum of squares = $x^2 + (x+2)^2$	1
$= x^{2} + x^{2} + 4x + 4$ $= 2x^{2} + 4x + 4$	
Given that their sum of squares = 290 $\Rightarrow 2x^2 + 4x + 4 = 290$	
$\Rightarrow 2x^2 + 4x = 290 - 4 = 286$	4
$\Rightarrow 2x^2 + 4x - 286 = 0$ \Rightarrow 2(x^2 + 2x - 143) = 0	1
$\Rightarrow x^2 + 2x - 143 = 0$ \Rightarrow x^2 + 13x - 11x - 143 = 0	
$\Rightarrow x(x+13) - 11(x+13) = 0$ \Rightarrow (x -11)(x+13) = 0	
\Rightarrow (x-11) = 0 , (x+13) = 0 Therefore , x = 11 or -13	
According to question, x is a positive odd integer. Hence, We take positive value of x	1
So , $x = 11$ and $(x+2) = 11 + 2 = 13$ Therefore , the odd positive integers are 11 and 13 .	



Let AB and CD be the multi-storeyed building and the building respectively.

Let the height of the multi-storeyed building= h m and

the distance between the two buildings = x m.

$$AE = CD = 8 m [Given]$$

$$BE = AB - AE = (h - 8) \text{ m}$$

and

$$AC = DE = x m [Given]$$

Also,

$$\angle$$
FBD = \angle BDE = 30° (Alternate angles)

$$\angle$$
FBC = \angle BCA = 45° (Alternate angles)

Now,

In Δ ACB,

⇒
$$\tan 45^0 = \frac{AB}{AC} \left[\because \tan \theta = \frac{Perpendicular}{Base} \right]$$

⇒ $1 = \frac{h}{x}$

In Δ BDE,

1/2

1

$$\Rightarrow \tan 30^{0} = \frac{BE}{ED}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h-8}{x}$$

$$\Rightarrow x = \sqrt{3}(h-8)....(ii)$$

1

From (i) and (ii), we get,

h =
$$√3$$
h -8 $√3$

$$\sqrt{3}h - h = 8\sqrt{3}$$

h (
$$\sqrt{3}$$
 -1) =8 $\sqrt{3}$

$$h = \frac{8\sqrt{3}}{\sqrt{3}-1}$$

$$h = \frac{8\sqrt{3}}{\sqrt{3} - 1} x \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$$

1

h-= $4\sqrt{3}(\sqrt{3}+1)$

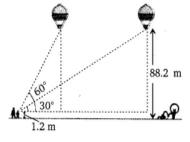
$$h = 12 + 4\sqrt{3} \text{ m}$$

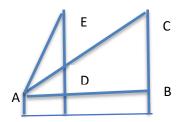
Distance between the two building

$$x = (12 + 4\sqrt{3})m \quad [From(i)]$$

1/2

OR





From the figure, the angle of elevation for the first position of the balloon \bot EAD = 60° and for second position \bot BAC = 30°. The vertical distance

ED = CB = 88.2-1.2 = 87m.

1

	Let AD = x m and AB = y m.	
	Then in right \triangle ADE, tan60° = $\frac{DE}{AD}$	
	$\sqrt{3} = \frac{87}{X}$	1
	$X = \frac{87}{\sqrt{3}}$ (i)	
	In right $\triangle ABC$, tan $30^{\circ} = \frac{BC}{AB}$	
	$\frac{1}{\sqrt{3}} = \frac{87}{y}$	
	Y = 87√3(ii)	1
	Subtracting(i) and (ii)	
	$y-x = 87\sqrt{3} - \frac{87}{\sqrt{3}}$	
	$y-x = \frac{87 \cdot 2.\sqrt{3}}{\sqrt{3}.\sqrt{3}}$	1
	y-x = 58√3 m	
	Hence, the distance travelled by the balloon is equal to BD	
	y-x =58√3 m.	1
35	Let A be the first term and D the common difference of A.P.	
	Tp=a=A+(p-1)D=(A-D)+pD (1) Tq=b=A+(q-1)D=(A-D)+qD(2)	1/2
	Tq=b=A+(q-1)D=(A-D)+qD(2)	1/2
	Tr = c = A + (r-1)D = (A-D) + rD(3)	1/2
	Here we have got two unknowns A and D which are to be eliminated.	
	We multiply (1),(2) and (3) by $q-r,r-p$ and $p-q$ respectively and add:	
	a (q-r) = (A - D)(q-r) + D p(q-r) $b(r-p) = (A-D) (r-p) + Dq (r-p)$ $c(p-q) = (A-D) (p-q) + Dr (p-q)$	1/2 1/2 1/2
	a(q-r)+b(r-p)+c(p-q)	1
	= (A-D)[q-r+r-p+p-q]+D[p(q-r)+q(r-p)+r(p-q)] $= (A-D)(0)+D[pq-pr+qr-pq+rp-rq)$ $= 0$	1

36	Height (in cm) f C.F.	
	below 140 4 4	
	140-145 7 11	1
	145-150 18 29	'
	150-155 11 40	
	155-160 6 46	
	160-165 5 51	
	<i>N</i> =51⇒	
	N/2=51/2=25.5	
	As 29 is just greater than 25.5, therefore median class is 145-150.	
	$Median = I + \frac{(\frac{N}{2} - C)}{f} X h$	
	Here, <i>\model</i> lower limit of median class =145	
	C=C.F. of the class preceding the median class =11	1/2
	h= higher limit - lower limit =150−145=5	
	f= frequency of median class =18	
	∴median=	
		17
	$= 145 + \frac{(25.5 - 11)}{18} \times 5$	1/2
	=149.03	
	Mean by direct method	1
	Height (in cm) ^f X _i fX _i	
	below 140 4 137.5 550	
	140-145 7 142.5 997.5	
	145-150 18 147.5 2655	
	150-155 11 152.5 1677.5	
	155-160 6 157.5 945	1
	5 162.5 812.5	'
	$\int fx$	
	Mean =	
	N	
	=7637.5/51	
	= 149.75	1