Marking Scheme

Class- X Session- 2021-22

TERM 1

Subject- Mathematics (Standard)

SECTION A			
QN	Correct	HINTS/SOLUTION	MAR
	Option		KS
1	(b)	Least composite number is 4 and the least prime number is 2. $LCM(4,2)$: $HCF(4,2) = 4:2 = 2:1$	1
2	(a)	For lines to coincide: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ so, $\frac{5}{15} = \frac{7}{21} = \frac{-3}{-k}$ i.e. $k = 9$	1
3	(b)	By Pythagoras theorem The required distance $=\sqrt{(200^2 + 150^2)}$ $=\sqrt{(40000 + 22500)} = \sqrt{(62500)} = 250\text{m}$. So the distance of the girl from the starting point is 250m.	1
4	(d)	Area of the Rhombus = $\frac{1}{2} d_1 d_2 = \frac{1}{2} \times 24 \times 32 = 384 \text{ cm}^2$. Using Pythagoras theorem side ² = $(\frac{1}{2}d_1)^2 + (\frac{1}{2}d_2)^2 = 12^2 + 16^2 = 144 + 256 = 400$ Side = 20cm Area of the Rhombus = base x altitude $384 = 20 \times 1000 \times 10000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 10000 \times 1000 \times 1000 \times 1000 \times 10$	1
5	(a)	Possible outcomes are (HH), (HT), (TH), (TT) Favorable outcomes(at the most one head) are (HT), (TH), (TT) So probability of getting at the most one head =3/4	1
6	(d)	Ratio of altitudes = Ratio of sides for similar triangles So AM:PN = AB:PQ = 2:3	1
7	(b)	$2\sin^2\beta - \cos^2\beta = 2$ Then $2\sin^2\beta - (1-\sin^2\beta) = 2$ $3\sin^2\beta = 3 \text{ or } \sin^2\beta = 1$ $\beta \text{ is } 90^\circ$	1
8	(c)	Since it has a terminating decimal expansion, so prime factors of the denominator will be 2,5	1
9	(a)	Lines x=a is a line parallel to y axis and y=b is a line parallel to x axis. So they will intersect.	1
10	(d)	Distance of point A(-5,6) from the origin(0,0) is $\sqrt{(0+5)^2 + (0-6)^2} = \sqrt{25+36} = \sqrt{61}$ units	1
11	(b)	$a^2=23/25$, then $a=\sqrt{23}/5$, which is irrational	1
12	(c)	LCM X HCF = Product of two numbers $36 \times 2 = 18 \times x$ x = 4	1
13	(b)	$\tan A = \sqrt{3} = \tan 60^{\circ} \text{ so } \angle A = 60^{\circ}, \text{ Hence } \angle C = 30^{\circ}.$ So $\cos A \cos C$ - $\sin A \sin C = (1/2)x (\sqrt{3}/2) - (\sqrt{3}/2)x (1/2) = 0$	1
14	(a)	$1x + 1x + 2x = 180^{\circ}, x = 45^{\circ}.$ $\angle A, \angle B \text{ and } \angle C \text{ are } 45^{\circ}, 45^{\circ} \text{ and } 90^{\circ} \text{resp.}$ $\frac{\sec A}{\csc B} - \frac{\tan A}{\cot B} = \frac{\sec 45}{\csc 45} - \frac{\tan 45}{\cot 45} = \frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{1} = 1 - 1 = 0$	1

15	(d)	total distance 176	1
	(u)	Number of revolutions= $\frac{\text{total distance}}{\text{circumference}} = \frac{176}{2 \times \frac{22}{7} \times 0.7}$	1
		$\frac{\text{circumference}}{7} \times \frac{2 \times \sqrt{7}}{7} \times 0.7$	
		=40	
16	(b)	$\frac{\text{perimeter of } \Delta ABC}{\text{perimeter of } \Delta DEF} = \frac{BC}{EF}$	1
		perimeter of ΔDEF EF	
		$\frac{7.5}{\text{perimeter of }\Delta DEF} = \frac{2}{4} \text{ . So perimeter of }\Delta DEF = 15\text{cm}$	
17	(b)	Since DE BC, \triangle ABC \sim \triangle ADE (By AA rule of similarity)	1
		So $\frac{AD}{AB} = \frac{DE}{BC}$ i.e. $\frac{3}{7} = \frac{DE}{14}$. So DE = 6cm	
10	()		
18	(a)	Dividing both numerator and denominator by $\cos \beta$,	1
		$\frac{4\sin\beta - 3\cos\beta}{4\sin\beta + 3\cos\beta} = \frac{4\tan\beta - 3}{4\tan\beta + 3} = \frac{3 - 3}{3 + 3} = 0$	
19	(d)	$-2(-5x + 7y = 2)$ gives $10x - 14y = -4$. Now $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = -2$	1
20	(a)	Number of Possible outcomes are 26	1
		Favorable outcomes are M, A, T, H, E, I, C, S	
		probability = $8/26 = 4/13$ SECTION B	
21	(c)	Since HCF = 81, two numbers can be taken as 81x and 81y,	1
	(C)	ATQ $81x + 81y = 1215$	
		Or $x+y=15$	
		which gives four co prime pairs-	
		1,14	
		2,13	
		4,11 7, 8	
		7, 8	
22	(c)	Required Area is area of triangle $ACD = \frac{1}{2}(6)2$	1
	. ,	= 6 sq units	
23	(b)	$\tan \alpha + \cot \alpha = 2$ gives $\alpha = 45^{\circ}$. So $\tan \alpha = \cot \alpha = 1$	1
24		$\tan^{20}\alpha + \cot^{20}\alpha = 1^{20} + 1^{20} = 1 + 1 = 2$	
24	(a)	Adding the two given equations we get: $348x + 348y = 1740$. So $x + y = 5$	1
25	(c)	LCM of two prime numbers = product of the numbers	1
	(-)	221= 13 x 17.	
		So p= 17 & q= 13	
		∴3p - q= 51-13 =38	
26	(a)	Probability that the card drawn is neither a king nor a queen	1
		$=\frac{52-8}{52}$	
		=44/52=11/13	
27	(b)	Outcomes when 5 will come up at least once are-	1
		(1,5), (2,5), (3,5), (4,5), (5,5), (6,5), (5,1), (5,2), (5,3), (5,4) and (5,6)	
		Probability that 5 will come up at least once = 11/36	
28	(c)	$1 + \sin^2 \alpha = 3 \sin \alpha \cos \alpha$	1
	` /	$\sin^2\alpha + \cos^2\alpha + \sin^2\alpha = 3\sin\alpha\cos\alpha$	
		$2\sin^2\alpha - 3\sin\alpha\cos\alpha + \cos^2\alpha = 0$	
		$(2\sin\alpha - \cos\alpha)(\sin\alpha - \cos\alpha) = 0$	
		$\therefore \cot \alpha = 2 \text{ or } \cot \alpha = 1$	
29	(a)	Since ABCD is a parallelogram, diagonals AC and BD bisect each other, ∴ mid	1
	(a)	point of AC= mid point of BD	-
		Form of the man form of DD	

		$(\frac{x+1}{2}, \frac{6+2}{2}) = (\frac{3+4}{2}, \frac{5+y}{2})$ Comparing the co-ordinates, we get, $\frac{x+1}{2} = \frac{3+4}{2}$. So, $x = 6$ Similarly, $\frac{6+2}{2} = \frac{5+y}{2}$. So, $y = 3$ $\therefore (x, y) = (6,3)$	
30	(c)	$\Delta ACD \sim \Delta ABC(AA)$ $\therefore \frac{AC}{AB} = \frac{AD}{AC} (CPST)$ $8/AB = 3/8$ This gives $AB = 64/3$ cm. So $BD = AB - AD = 64/3 - 3 = 55/3$ cm.	1
31	(d)	Any point (x, y) of perpendicular bisector will be equidistant from A & B. $\therefore \sqrt{(x-4)^2 + (y-5)^2} = \sqrt{(x+2)^2 + (y-3)^2}$ Solving we get $-12x - 4y + 28 = 0$ or $3x + y - 7 = 0$	1
32	(b)	$\frac{\cot y^{\circ}}{\cot x^{\circ}} = \frac{AC/BC}{AC/CD} = CD/BC = CD/2CD = \frac{1}{2}$	1
33	(a)	The smallest number by which 1/13 should be multiplied so that its decimal expansion terminates after two decimal points is $13/100$ as $\frac{1}{13}$ x $\frac{13}{100}$ = $\frac{1}{100}$ = 0.01 Ans: 13/100	1
34	(b)	ΔABE is a right triangle & FDGB is a square of side x cm ΔAFD ~Δ DGE(AA) ∴ $\frac{AF}{DG} = \frac{FD}{GE}$ (CPST) $\frac{16 - x}{x} = \frac{x}{8 - x}$ (CPST) 128 = 24x or x = 16/3cm	1
35	(a)	Since P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1 \therefore coordinates of P are $(\frac{9k-1}{k+1}, \frac{8k+3}{k+1})$ Since P lies on the line $x - y + 2 = 0$, then $\frac{9k-1}{k+1} - \frac{8k+3}{k+1} + 2 = 0$ 9k-1-8k-3+2k+2=0 which gives $k=2/3$	1
36	(c)	Shaded area = Area of semicircle + (Area of half square – Area of two quadrants) = Area of semicircle +(Area of half square – Area of semicircle) = Area of half square = ½ x 14 x 14 = 98cm²	1

37	(d)		1
		Let O be the	
		center of the circle. $OA = OB = AB = 1$ cm. So $\triangle OAB$ is an equilateral triangle and $\triangle \triangle AOB = 60^{\circ}$	
		Required Area = 8x Area of one segment with r=1cm, Θ = 60°	
		$= 8x(\frac{60}{360} \times \pi \times 1^{2} - \frac{\sqrt{3}}{4} \times 1^{2})$ = 8(\pi/6 - \sqrt{3}/4)cm ²	
	-		
38	(b)	Sum of zeroes = $2 + \frac{1}{2} = -\frac{5}{p}$ i.e. $\frac{5}{2} = -\frac{5}{p}$. So p= -2	1
		Product of zeroes = $2x \frac{1}{2} = r/p$ i.e. $r/p = 1$ or $r = p = -2$	
39	(-)		1
39	(c)	$2\pi r = 100$. So Diameter = $2r = 100/\pi =$ diagonal of the square. side $\sqrt{2}$ = diagonal of square = $100/\pi$	1
		$\therefore \text{ side} = 100/\sqrt{2\pi} = 50\sqrt{2}/\pi$	
40	(b)	$3^{x+y} = 243 = 3^5$	1
		So $x+y=5$ (1) $243^{x-y}=3$	
		$(3^5)^{x-y} = 3^1$	
		So $5x - 5y = 1$ (2) Since : $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, so unique solution	
		a_2 / b_2 , so unique solution	
41	(c)	SECTION C Initially, at t=0. Annie's height is 48ft	1
41	(c)	SECTION C Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48	1
41	(c)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$	1
41	(c)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48	1
41	(c) (b)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48 When Annie touches the pool, her height =0 feet	1
	.,	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48 When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$	
	.,	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48 When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ $2t(t-2) + 3(t-2) = 0$	
	.,	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48 When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$	
	.,	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48 When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ $2t(t-2) + 3(t-2) = 0$ $(2t + 3) (t-2) = 0$	
	.,	Initially, at t=0, Annie's height is 48ft So, at t=0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48 When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ $2t(t-2) + 3(t-2) = 0$ i.e. t= 2 or t= $-3/2$ Since time cannot be negative, so t= 2seconds $t = -1 & t = 2 \text{ are the two zeroes of the polynomial p(t)}$	
42	(b)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48 When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ 2t(t-2) + 3(t-2) = 0 i.e. t= 2 or t= -3/2 Since time cannot be negative, so t= 2seconds	1
42	(b)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48 When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ $2t(t-2) + 3(t-2) = 0$ i.e. t= 2 or t= -3/2 Since time cannot be negative, so t= 2seconds $t = -1 & t = 2 \text{ are the two zeroes of the polynomial p(t)}$ Then $p(t) = k (t - 1)(t-2)$ $= k(t+1)(t-2)$ When $t = 0$ (initially) $h_1 = 48$ ft	1
42	(b)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48 When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ $2t(t-2) + 3(t-2) = 0$ i.e. t = 2 or t = $-3/2$ Since time cannot be negative, so t = 2 seconds $t = -1 & t = 2 \text{ are the two zeroes of the polynomial p(t)}$ Then p(t)=k (t-1)(t-2) $= k(t+1)(t-2)$	1
42	(b)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So $k = 48$ When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ $2t(t-2) + 3(t-2) = 0$ i.e. $t = 2$ or $t = -3/2$ Since time cannot be negative, so $t = 2$ seconds $t = -1 & t = 2 \text{ are the two zeroes of the polynomial p(t)}$ Then $p(t) = k(t-1)(t-2)$ $= k(t+1)(t-2)$ When $t = 0$ (initially) $h_1 = 48$ ft $p(0) = k(0^2 - 0 - 2) = 48$	1
42	(b)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 h(0) = $-16(0)^2 + 8(0) + k = 48$ So k = 48 When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ $2t(t-2) + 3(t-2) = 0$ (2t +3) (t-2) =0 i.e. t= 2 or t= $-3/2$ Since time cannot be negative, so t= 2seconds $t = -1 & t = 2 \text{ are the two zeroes of the polynomial p(t)}$ Then p(t)=k (t1)(t-2) = k(t+1)(t-2) When t = 0 (initially) h ₁ = 48ft p(0)=k(0^2 - 0 - 2) = 48 i.e. $-2k = 48$ So the polynomial is $-24(t^2 - t - 2) = -24t^2 + 24t + 48$.	1
43	(b) (d)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So $k = 48$ When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ $2t(t-2) + 3(t-2) = 0$ (2t +3) (t-2) =0 i.e. t= 2 or t= -3/2 Since time cannot be negative, so t= 2 seconds $t = -1 & t = 2 \text{ are the two zeroes of the polynomial p(t)}$ Then $p(t) = k(t-1)(t-2)$ $= k(t+1)(t-2)$ When $t = 0$ (initially) $h_t = 48$ ft $p(0) = k(0^2 - 0 - 2) = 48$ i.e. $-2k = 48$ So the polynomial is $-24(t^2 - t - 2) = -24t^2 + 24t + 48$.	1

		$q(0)=k(0^2-1(0)-6)=48$	
		i.e. $-6k = 48$ or $k = -8$	
		Putting $k = -8$ in equation (1), reqd. polynomial is $-8(t^2 - 1t + -6)$	
		$= -8t^2 + 8t + 48$	
45	(a)	When the zeroes are negative of each other,	1
	. ,	sum of the zeroes $= 0$	
		So, $-b/a = 0$	
		$-\frac{(k-3)}{-12} = 0$	
		$+\frac{k-3}{12}=0$	
		k-3=0,	
		i.e. $k = 3$.	
		1.C. $K = S$.	
46	(a)	Centroid of Δ EHJ with E(2,1), H(-2,4) & J(-2,-2) is	1
40	(a)		1
		$\left(\frac{2+-2+-2}{3}, \frac{1+4+-2}{3}\right) = (-2/3, 1)$	
47	(c)	If P needs to be at equal distance from A(3,6) and G(1,-3), such that A,P and G	1
		are collinear, then P will be the mid-point of AG.	
		So coordinates of P will be $(\frac{3+1}{2}, \frac{6+-3}{2}) = (2, 3/2)$	
48	(a)	Let the point on x axis equidistant from $I(-1,1)$ and $E(2,1)$ be $(x,0)$	1
10	(a)	then $\sqrt{(x+1)^2 + (0-1)^2} = \sqrt{(x-2)^2 + (0-1)^2}$	•
		then $\sqrt{(x+1)^2 + (0-1)^2} = \sqrt{(x-2)^2 + (0-1)^2}$ $x^2 + 1 + 2x + 1 = x^2 + 4 - 4x + 1$	
		6x = 3	
		So $x = \frac{1}{2}$.	
		\therefore the required point is ($\frac{1}{2}$, 0)	
40	(1.)		1
49	(b)	Let the coordinates of the position of a player Q such that his distance from	1
		K(-4,1) is twice his distance from $E(2,1)$ be $Q(x, y)$	
		Then KQ : QE = 2: 1 $2 \times 2 + 1 \times -4 = 2 \times 1 + 1 \times 1$	
		$Q(x, y) = \left(\frac{2 \times 2 + 1 \times -4}{3}, \frac{2 \times 1 + 1 \times 1}{3}\right)$	
		=(0,1)	
50	(d)	Let the point on y axis equidistant from B(4,3) and C(4,-1) be (0,y)	1
	` /	then $\sqrt{(4-0)^2 + (3-y)^2} = \sqrt{(4-0)^2 + (y+1)^2}$	
		$16 + y^2 + 9 - 6y = 16 + y^2 + 1 + 2y$	
		-8y = -8	
		So y = 1.	
		\therefore the required point is (0, 1)	
		·· the required point is (0, 1)	