Class- X Session- 2020-21

Subject- Mathematics -Standard

Sample Question Paper

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

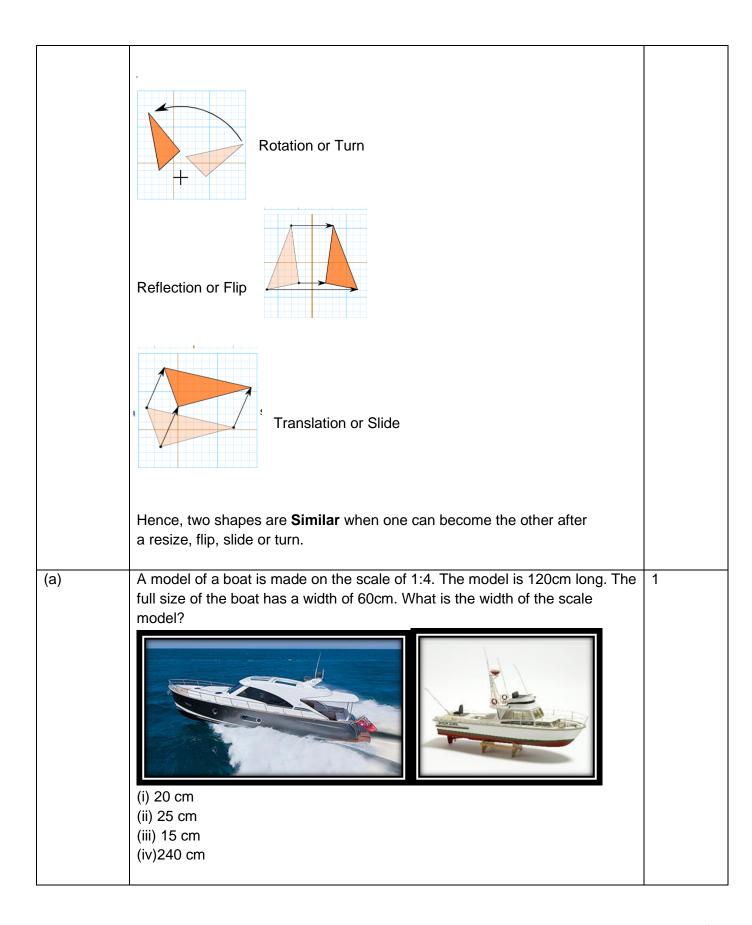
- 1. This question paper contains two parts A and B.
- 2. Both Part A and Part B have internal choices.

Part - A:

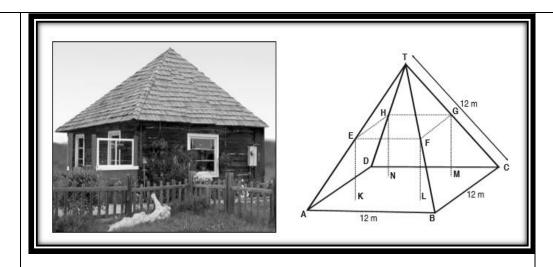
- 1. It consists three sections- I and II.
- 2. Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.
- 3. Section II has 4 questions on case study. Each case study has 5 case-based sub-parts. An examinee is to attempt any 4 out of 5 sub-parts.

Part - B:

- 1. Question No 21 to 26 are Very short answer Type questions of 2 mark each,
- 2. Question No 27 to 33 are Short Answer Type questions of 3 marks each
- 3. Question No 34 to 36 are Long Answer Type questions of 5 marks each.
- 4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.


Question	Part-A						
No.							
	Section-I						
	Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.						
1	If xy=180 and HCF(x,y)=3, then find the LCM(x,y).	1					
	OR						
	The decimal representation of $\frac{14587}{2^1 \times 5^4}$ will terminate after how many decimal places?						
2	If the sum of the zeroes of the quadratic polynomial $3x^2$ -kx+6 is 3, then find the value of k.	1					

3.	For what value of k, the pair of linear equations 3x+y=3 and 6x+ky=8 does not have a solution.	1
4.	If 3 chairs and 1 table costs Rs. 1500 and 6 chairs and 1 table costs Rs.2400. Form linear equations to represent this situation.	1
5.	Which term of the A.P. 27, 24, 21,is zero?	1
	OR	
	In an Arithmetic Progression, if d= - 4, n=7,a _n =4, then find a.	
6.	For what values of k, the equation $9x^2+6kx+4=0$ has equal roots?	
7.	Find the roots of the equation x ² +7x+10=0	1
	OR	
	For what value(s) of 'a' quadratic equation $30 ax^2 - 6x + 1 = 0$ has no real roots?	
8.	If PQ=28cm, then find the perimeter of ΔPLM	1
9.	If two tangents are inclined at 60° are drawn to a circle of radius 3cm then find length of each tangent.	1
	OR	
	PQ is a tangent to a circle with centre O at point P. If \triangle OPQ is an isosceles triangle, then find \angle OQP.	


10.	In the ΔABC, D and E are points on side AB and AC respectively such that DE II BC. If AE=2cm, AD=3cm and BD=4.5cm, then find CE.	1
11.	In the figure, if B1, B2, B3, and A1,A2, A3, have been marked at equal distances. In what ratio C divides AB?	1
12.	$Sin A + Cos B = 1$, $A = 30^{\circ}$ and B is an acute angle, then find the value of B.	1
13.	If x=2sin²Θ and y=2cos²Θ+1, then find x+y	1
14.	In a circle of diameter 42cm,if an arc subtends an angle of 60° at the centre where ∏=22/7, then what will be the length of arc.	1
15.	12 solid spheres of the same radii are made by melting a solid metallic cylinder of base diameter 2cm and height 16cm. Find the diameter of the each sphere.	1
16.	Find the probability of getting a doublet in a throw of a pair of dice.	1
	OR	1

	Find the probability of getting a black queen when a card is drawn at random from a well-shuffled pack of 52 cards.	
	Section-II Case study based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark	
17.	Case Study based-1 SUN ROOM The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using • Four clear glass panels, trapezium in shape, all the same size • One tinted glass panel, half a regular octagon in shape Y A B Top view Scale 1 cm = 1m	
(a)	Refer to Top View Find the mid-point of the segment joining the points J (6, 17) and I (9, 16). (i) (33/2,15/2) (ii) (3/2,1/2) (iii) (15/2,33/2) (iv) (1/2,3/2)	1

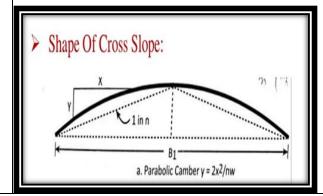
(b)	Refer to Top View	1						
	The distance of the point P from the y-axis is							
	(i) 4							
	(ii) 15							
	(iii) 19							
	(iv) 25							
	(11) 25							
(c)	Refer to Front View	1						
	The distance between the points A and S is							
	(i) 4							
	(ii) 8							
	(iii)16							
	(iv)20							
(d)	Refer to Front View	1						
()	Find the co-ordinates of the point which divides the line segment joining the							
	points A and B in the ratio 1:3 internally.							
	(i) (8.5,2.0)							
	(ii) (2.0,9.5)							
	(ii) (2.0,9.5) (iii) (3.0,7.5)							
	(ii) (3.0,7.3) (iv) (2.0,8.5)							
	(14) (2.0,0.0)							
(e)	Refer to Front View							
	If a point (x,y) is equidistant from the Q(9,8) and S(17,8),then							
	(i) x+y=13							
	(ii) x-13=0							
	(iii) y-13=0							
	(iv)x-y=13							
18.	Case Study Based- 2							
	SCALE FACTOR AND SIMILARITY							
	SCALE FACTOR							
	A scale drawing of an object is the same shape as the object but a different							
	size.							
	The scale of a drawing is a comparison of the length used on a drawing to							
	the length it represents. The scale is written as a ratio.							
	SIMILAR FIGURES							
	The ratio of two corresponding sides in similar figures is called the scale							
	factor.							
	length in image							
	Scale factor = $\frac{length in image}{corresponding length in object}$							
	If one shape can become another using Resizing then the							
	j and and a g and and							
	shapes are Similar							

(b)	What will effect the similarity of any two polygons? (i) They are flipped horizontally (ii)They are dilated by a scale factor (iii)They are translated down (iv)They are not the mirror image of one another	1
(c)	If two similar triangles have a scale factor of a: b. Which statement regarding the two triangles is true? (i)The ratio of their perimeters is $3a : b$ (ii)Their altitudes have a ratio a:b (iii)Their medians have a ratio $\frac{a}{2}$: b (iv)Their angle bisectors have a ratio a^2 : b^2	1
(d)	The shadow of a stick 5m long is 2m. At the same time the shadow of a tree 12.5m high is (i)3m (ii)3.5m (iii)4.5m (iv)5m	1
(e)	Below you see a student's mathematical model of a farmhouse roof with measurements. The attic floor, ABCD in the model, is a square. The beams that support the roof are the edges of a rectangular prism, EFGHKLMN. E is the middle of AT, F is the middle of BT, G is the middle of CT, and H is the middle of DT. All the edges of the pyramid in the model have length of 12 m.	1

What is the length of EF, where EF is one of the horizontal edges of the block?

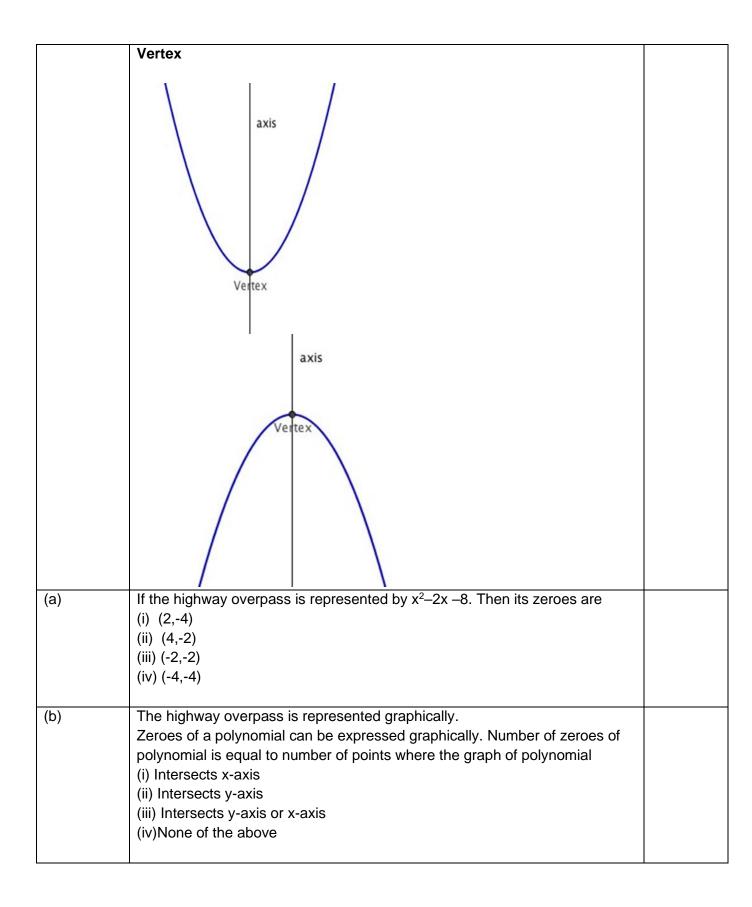
(i)24m

(ii)3m


(iii)6m

(iv)10m

19. Case Study Based- 3


Applications of Parabolas-Highway Overpasses/Underpasses A highway underpass is parabolic in shape.

Parabola

A parabola is the graph that results from **p(x)**=**a**x²+**b**x+**c** Parabolas are symmetric about a vertical line known as the **Axis of Symmetry**. The Axis of Symmetry runs through the maximum or minimum point of the parabola which is called the

(c)	Graph of a quadratic polynomial is a (i) straight line (ii) circle (iii)parabola (iv)ellipse										
(d)	The representation of Highway Underpass whose one zero is 6 and sum of the zeroes is 0, is $ (i)x^2 - 6x + 2 $ $ (ii) x^2 - 36 $ $ (iii)x^2 - 6 $ $ (iv)x^2 - 3 $										
(e)	The number of zeroes that polynomial $f(x) = (x - 2)^2 + 4$ can have is: (i)1 (ii) 2 (iii) 0 (iv) 3										
20.	Case Study Based- 4 100m RACE A stopwatch was used to find the time that it took a group of students to run 100 m.										
	Time 0-20 20-40 40-60 60-80 80-100 (in sec)										
	No. of 8 10 13 6 3 students										

	(i)54	
	(ii)63	
	(iii)43	
	(iv)50	
(b)	What wiil be the upper limit of the modal class ?	
	(i)20	
	(ii)40	
	(iii)60	
	(iv)80	
(c)	The construction of cummulative frequency table is useful in determining the	
	(i)Mean	
	(ii)Median	
	(iii)Mode	
	(iv)All of the above	
(d)	The sum of lower limits of median class and modal class is	
	(i)60	
	(ii)100	
	(iii)80	
	(iv)140	
(e)	How many students finished the race within 1 minute?	
	(i)18	
	(ii)37	
	(iii)31	
	(iv)8	
	Part –B	
	All questions are compulsory. In case of internal choices, attempt any	
	one.	
21.	3 bells ring at an interval of 4,7 and 14 minutes. All three bell rang at 6 am,	2
	when the three balls will the ring together next?	
22.	Find the point on x-axis which is equidistant from the points (2,-2) and (-4,2)	2
	OR	

P (-2, 5) and Q (3, 2) are two points. Find the co-ordinates of the point R on PQ such that PR=2QR	
Find a quadratic polynomial whose zeroes are 5-3 $\sqrt{2}$ and 5+3 $\sqrt{2}$.	2
Draw a line segment AB of length 9cm. With A and B as centres, draw circles of radius 5cm and 3cm respectively. Construct tangents to each circle from the centre of the other circle.	2
If tanA=3/4, find the value of 1/sinA+1/cosA	2
OR	
If $\sqrt{3} \sin\Theta - \cos\Theta = 0$ and $0^{\circ} < \Theta < 90^{\circ}$, find the value of Θ	
In the figure, quadrilateral ABCD is circumscribing a circle with centre O and AD⊥AB. If radius of incircle is 10cm, then the value of x is	2
Prove that 2- $\sqrt{3}$ is irrational, given that $\sqrt{3}$ is irrational.	3
If one root of the quadratic equation $3x^2+px+4=0$ is 2/3, then find the value of p and the other root of the equation.	3
OR	
The roots α and β of the quadratic equation x^2 -5x+3(k-1)=0 are such that α - β =1. Find the value k.	
	Draw a line segment AB of length 9cm. With A and B as centres, draw circles of radius 5cm and 3cm respectively. Construct tangents to each circle from the centre of the other circle. If $\tan A=3/4$, find the value of $1/\sin A+1/\cos A$ OR If $\sqrt{3}\sin \Theta-\cos \Theta=0$ and $0^{\circ}<\Theta<90^{\circ}$, find the value of Θ In the figure, quadrilateral ABCD is circumscribing a circle with centre Θ and $AD\perp AB$. If radius of incircle is 10 cm, then the value of x is x is irrational. Prove that x is irrational, given that x is irrational. If one root of the quadratic equation x is x in x is x in x

29.	In the figure, ABCD is a square of side 14 cm. Semi-circles are drawn with each side of square as diameter. Find the area of the shaded region.								3	
				A		B				
30.	The perimet one side of t of the secon	the firs	t triangl		-			-	-	3
					OR					
	In an equilat BC. Prove the				a point	on side E	3C such	that BD	= 1/3	
31.	The median of the following data is 16. Find the missing frequencies a and b, if the total of the frequencies is 70.								3	
	Class	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	
	Frequency	12	а	12	15	b	6	6	4	
32.										3
	If the angles of elevation of the top of the candle from two coins distant 'a' cm and 'b' cm (a>b) from its base and in the same straight line from it are 30° and 60°, then find the height of the candle.									

			Se	ection V				
33.	The mode of t	3						
	Class	40-50	50-60	60-70	70-80	80-90]	
	Frequency	5	Х	15	12	7		
34.	The two palm other on either between them are 60° and 30 distances of the	5						
	The angles of high as observed Find the heigh building and the							
35.	Water is flowing through a cylindrical pipe of internal diameter 2cm, into a cylindrical tank of base radius 40 cm at the rate of 0.7m/sec. By how much will the water rise in the tank in half an hour?							5
36.	A motorboat c in 6 hours. In t 36km downstr stream.	he same ti	me it cove	rs a dista	ance of 1	2 km upstı	eam and	5