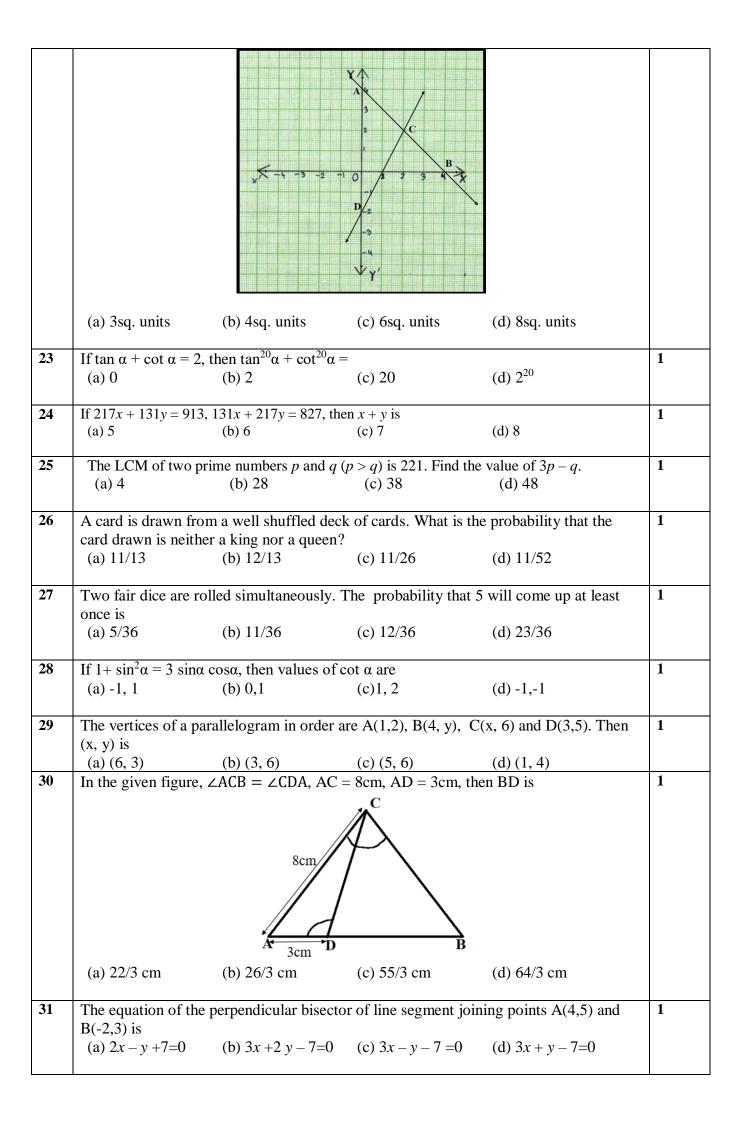
Physics Master Academy Only Teaching Noting Else.

Sample Question Paper Class – X Session -2021-22 TERM 1

Subject- Mathematics (Standard) 041


Time Allowed: 90 minutes Maximum Marks: 40

General Instructions:

- 1. The question paper contains three parts A, B and C
- 2. Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted
- 3. Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted
- 4 Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

			SECTION A		
	Section A consists	s of 20 questions of 1	1 mark each. Any 16 que	stions are to be attempted	
Q No					Marks
1	The ratio of LCM a (a) 1:2	and HCF of the leas (b) 2:1	st composite and the leas (c) 1:1	st prime numbers is (d) 1:3	1
2	The value of k for (a) 9	which the lines $5x$ + (b) 5	7y=3 and 15x + 21y = k (c) 7	coincide is (d) 18	1
3	A girl walks 200m from the starting po (a)350m		hen 150m towards North (c) 300m	n. The distance of the girl (d) 225	1
4	altitude of the rhon	nbus is	nbus are 24cm and 32cm (c) 19 cm`	_	1
5	Two fair coins are (a) 3/4	tossed. What is the (b) ½	probability of getting at (c) ½	the most one head? (d) 3/8	1
6	$\Delta ABC \sim \Delta PQR$. If A $PQ^2 = 4:9$, then A (a) 16:81	AM and PN are altit M:PN = (b) 4:9	udes of $\triangle ABC$ and $\triangle PQ$ (c) 3:2	R respectively and AB ² : (d) 2:3	1
7	If $2\sin^2\beta - \cos^2\beta =$ (a) 0°	2, then β is (b) 90°	(c) 45°	(d) 30°	1
8	Prime factors of the 44.123 are (a) 2,3		rational number with the (c) 2,5	e decimal expansion (d) 3,5	1
9	The lines $x = a$ and (a) intersecting	y = b, are (b) parallel	(c) overlapping	(d) (None of these)	1
10	The distance of poi (a) 11 units	nt A(-5, 6) from the (b) 61 units	e origin is (c) √11 units	(d) √61 units	1
11	If $a^2 = 23/25$, then a (a) rational	a is (b) irrational	(c) whole number	(d) integer	1

12	If LCM(x , 18) =	36 and HCF(x , 18) = 2	2, then x is		1
	(a) 2	(b) 3	(c) 4	(d) 5	
13	In \triangle ABC right angled at B, if tan A= $\sqrt{3}$, then cos A cos C- sin A sin C =				
	(a) -1	(b) 0	(c) 1	(d) $\sqrt{3}/2$	
				, , , ,	
14	If the angles of A	ABC are in ratio 1:1	:2, respectively (the la	argest angle being angle	1
	C) 41 41 1	sec A tan A	A		
	C), then the valu	the of $\frac{\sec A}{\csc B} - \frac{\tan A}{\cot B}$	- 1S 		
	(a) 0	(b) 1/2	(c) 1	(d) $\sqrt{3}/2$	
15		evolutions made by a	circular wheel of rad	ius 0.7m in rolling a distance	1
	of 176m is				
	(a) 22	(b) 24	(c) 75	(d) 40	
1.0	A A D C : 1 /1	+ AD 2 DC 2	CA 2.7 ICA	ADC ADEE 1 FE	1
16		nat AB=3 cm, BC= 2c	cm , CA= 2.5 cm. If ΔA	$ABC \sim \Delta DEF$ and $EF =$	1
	4cm, then perim (a) 7.5 cm	(b) 15 cm	(c) 22.5 cm	(d) 30 cm	
	(a) 7.3 CIII	(b) 13 Cm	(C) 22.3 CIII	(d) 30 cm	
17	In the figure if I	DE BC AD = 3cm I	BD = 4cm and $BC = 1$	4 cm, then DE equals	1
	in the lighte, if I	32 ₁₁ 20, 112 3011, 1		em, men 22 equus	
			\mathbf{A}		
]	DE		
		/			
		\mathbf{B}			
	(a) 7cm	(b) 6cm	(c) 4cm	(d) 3cm	
	(u) / cm	(8) 3 6 m	(c) rem	(a) Jem	
18	If $4 \tan \beta = 3$, the	$\frac{4\sin\beta-3\cos\beta}{}$			1
			() 0 10	(1) 2/	
	(a) 0	(b) 1/3	(c) 2/3	(d) $\frac{3}{4}$	
19	One equation of	a main of domandant lin	an aquations is Euro	7 2 The second equation	1
19	can be	a pair of dependent line	ear equations is $-3x +$	7y = 2. The second equation	1
		= 0 b) $-10x - 14y + 4$	= 0 c) $-10x+14y +$	4 = 0 (d) $10x - 14y = -4$	
	<i>u)</i> 10 <i>x</i> (11 <i>y</i> 11 =	= 0	= 0	1 = 0 (a) $10x - 11y = 1$	
20	A letter of Engli	sh alphabets is choser	n at random. What is t	the probability that it is a letter	r 1
	of the word 'MA	ATHEMATICS'?		1	
	(a) 4/13	(b) 9/26	(c) 5/13	(d) 11/26	
		1	SECTION B		
	Section D consi	sts of 20 avastions of 1	montrooch Any 16 a	uestions are to be attempted	
QN	Section B consi	sts of 20 questions of 1	mark each. Any 10 q	uestions are to be attempted	MARKS
21	If sum of two nu	mbers is 1215 and the	eir HCF is 81, then th	e possible number of pairs	1
	of such numbers		on rior is or, then th	o possiole number of puns	
	(a) 2	(b) 3	(c) 4	(d) 5	
		\	· /	` '	
22	Given below is	the graph represent	ing two linear equa	tions by lines AB and CD	1
		0 1 1		se two lines and the line $x=0$?	
	Î.				

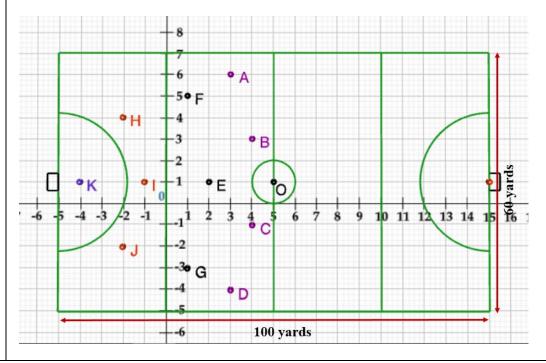
32	In the given figure,	, D is the mid-poin	t of BC, then the val	ue of $\frac{\cot y^{\circ}}{\cot x^{\circ}}$ is	1
		A Property of the control of the con	D	B	
	(a) 2	(b) 1/2	(c) 1/3	(d) 1/4	
33	The smallest numb terminates after tw (a) 13/100	_	_	so that its decimal expansion (d) 100/13	1
34			f largest square FDG	of lengths 16 cm and 8 cm B that can be inscribed in the	1
	(a) 32/3cm	(b) 16/3cm	(c)8/3cm	(d) 4/3cm	
35	Point P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1. If P lies on the line $x - y + 2 = 0$, then value of k is				1
	(a) $2/3$	(b) 1/2	(c) 1/3	(d) 1/4	
36	points of sides AB, I	BC, CD and DA resp	ectively. The area of t		1
37	of radius 1cm each point of intersection	, intersecting in sun of two circles is	ch a way that the cho	(d) 49π/2 cm ² taking five congruent circles ord formed by joining the Fotal area of all the dotted le is	1

	(a) $4(\pi/12-\sqrt{3}/4)$ cm ² (b) $(\pi/6-\sqrt{3}/4)$ cm ² (c) $4(\pi/6-\sqrt{3}/4)$ cm ² (d) $8(\pi/6-\sqrt{3}/4)$ c	
38	If 2 and $\frac{1}{2}$ are the zeros of px^2+5x+r , then (a) $p = r = 2$ (b) $p = r = -2$ (c) $p = 2$, $r = -2$ (d) $p = -2$, $r = 2$	1
39	The circumference of a circle is 100 cm. The side of a square inscribed in the circle is (a) $50\sqrt{2}$ cm (b) $100/\pi$ cm (c) $50\sqrt{2}/\pi$ cm (d) $100\sqrt{2}/\pi$ cm	1
40	The number of solutions of $3^{x+y} = 243$ and $243^{x-y} = 3$ is (a) 0 (b) 1 (c) 2 (d) infinite	1
	SECTION C	
	Case study based questions: Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.	
	Q41-Q45 are based on Case Study -1	
	Case Study -1 The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola. Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time 't' in seconds is given by the polynomial $h(t)$ such that $h(t) = -16t^2 + 8t + k.$	
41	What is the value of k? (a) 0 (b) - 48 (c) 48 (d) 48/-16	1
42	At what time will she touch the water in the pool? (a) 30 seconds (b) 2 seconds (c) 1.5 seconds (d) 0.5 seconds	1

43	Rita's height (in feet) above the water level is given by another polynomial $p(t)$ with	1
	zeroes -1 and 2. Then $p(t)$ is given by-	
	(a) $t^2 + t - 2$.	
	(b) $t^2 + 2t - 1$	
	(c) $24t^2 - 24t + 48$.	
	(d) $-24t^2 + 24t + 48$.	
44	A polynomial $q(t)$ with sum of zeroes as 1 and the product as -6 is modelling Anu's	1
	height in feet above the water at any time $t(in seconds)$. Then $q(t)$ is given by	
	(a) $t^2 + t + 6$	
	(b) $t^2 + t - 6$	
	(c) $-8t^2 + 8t + 48$	
	(d) $8t^2 - 8t + 48$	
45	The zeroes of the polynomial $r(t) = -12t^2 + (k-3)t + 48$ are negative of each other. Then	1
	k is	
	(a) 3	
	(b) 0	
	(c) -1.5	
	(d) -3	
	046 070 1 1 0 06 1 2	

Q46-Q50 are based on Case Study -2

Case Study -2


A **hockey field** is the playing surface for the game of hockey. Historically, the game was played on natural turf (grass) but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape - 100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must be 3.66 metres (4 yards) apart, and the lower edge of the crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie. Positions you might play include-

- Forward: As shown by players A, B, C and D.
- *Midfielders*: As shown by players E, F and G.
- Fullbacks: As shown by players H, I and J.
- Goalie: As shown by player K

Using the picture of a hockey field below, answer the questions that follow:

46	The coordinates of the centroid of Δ EHJ are	1
	(a) (-2/3, 1)	
	(b) (1,-2/3)	
	(c) (2/3,1)	
	(d) (-2/3,-1)	
47	If a player P needs to be at equal distances from A and G, such that A, P and G are in	1
	straight line, then position of P will be given by	
	(a) (-3/2, 2)	
	(b) (2,-3/2)	
	(c) (2, 3/2)	
	(d) (-2,-3)	
48	The point on x axis equidistant from I and E is	1
	(a) (1/2, 0)	
	(b) (0,-1/2)	
	(c) $(-1/2,0)$	
	(d) (0,1/2)	
49	What are the coordinates of the position of a player Q such that his distance from K is	1
	twice his distance from E and K, Q and E are collinear?	
	(a) (1, 0)	
	(b) (0,1)	
	(c) (-2,1)	
	(d) (-1,0)	
50	The point on y axis equidistant from B and C is	1
	(a) (-1, 0)	
	(b) (0,-1)	
	(c) (1,0)	
	(d) (0,1)	