	Sample Question Paper							
	<u>CLASS: XII</u>							
	Session: 2022-23							
	Applied Mathematics (Code-241)							
	Marking Scheme							
	Section – A							
	Each question carries 1-mark weightage							
	$x \equiv 27 \pmod{4}$							
	$\Rightarrow x - 27 = 4k$, for some integer k							
1.	$\Rightarrow x = 31 \text{ as } 27 < x \le 36$							
	(C) option							
2	(D) option							
2.	$n = 26 \Rightarrow t = 3.07 > t_{ar}(0.05) = 2.06$							
3.	(B) option							
	$n = 34 \Rightarrow v = 34 - 1 = 33$							
4.	(B) option							
	Speed of boat downstream = $u = 10 \text{ km/h}$							
	And, speed of boat upstream = $v = 6 \text{ km/h}$							
5.	\Rightarrow Speed of stream = $\frac{1}{2}(u - v) = 2 \text{ km/h}$							
	(B) option							
6	(C) option							
0.	Truck A carries water = $100 - (\frac{20 \times 1500}{10}) = 70 l$							
	$\frac{1000}{1000}$ (20×1000)							
7.	Truck B carries water = $80 - \left(\frac{1000}{1000}\right) = 60 l$							
	(C) option							
	Let the face value of the bond = x							
8.	Then, $\frac{1}{200}x = 1800 \Rightarrow x = 36000$							
	(D) option							
9	(C) option							
10	(D) option							
	$D = \frac{C-S}{480000-25000} = 45500$							
11.	(\mathbf{P}) option							
12.	(A) option							
	$\int \frac{dy}{dx} = \int \frac{dx}{dx}$							
	$y \log y = \int x$ $\Rightarrow \log(\log x) = \log x + \log C $							
13.	$\Rightarrow \log(\log y) = \log x + \log c $ $\Rightarrow \log(\log y) = \log Cr $							
	$\Rightarrow y = e^{ Cx }$							

	(B) option				
14.	$\left \left(\frac{60000}{10000} \right)^{\overline{4}} - 1 \right \times 100 = \left[\sqrt[4]{6} - 1 \right] \times 100$				
	(C) option				
15.	Cheaper Dearer 0 480 $Mean$ 300 3				
16.	(D) option				
17.	(C) option				
18.	(B) option				
	P(Win in one game) = P(Lose in one game) = $\frac{1}{2}$				
	\Rightarrow P (Beena to win in 3 out of 4 games) = ${}^{4}C_{3} \cdot \left(\frac{1}{2}\right)^{4} = \frac{1}{4} = 25\%$				
19.	Assertion is correct and Reason is the correct explanation for it				
	(A)option				
	Effective rate of interest = Nominal rate – inflation rate = $12.5 - 2 = 10.5\%$				
20	Assertion is correct				
20.	(B) option				
	Section – B				
	Each question carries 2-mark weightage				
21.	P = 250000, R = 7500, <i>i</i> = <i>r</i> /400				
	$\Rightarrow 250000 = \frac{7500 \times 400}{2} \Rightarrow r = 12$	1			
	r = 12	1			
22	$a - 8 = 1 \Rightarrow a = 9$	1			
~~.	a = 3 = 1 $a = 7a = -2 \Rightarrow h = -\frac{2}{3}$	1			
	$3b - 2 \rightarrow b - 3$ $c + 2 - 28 \rightarrow c - 20$	Ŧ			
	$\Rightarrow 2a + 3b - c = -14$	1			
	OR	-			
	Expanding C ₁ , we get $\Delta = 1(2x^2 + 4) - 2(-4x - 20) = 86$	1			
	$\Rightarrow x^2 + 4x - 21 = 0$				
	$\therefore x = 3, -7$	1			
23.	Let the number of hardcopy and paperback copies be x and y respectively \rightarrow Maximum profit $7 = (72) + (9)$	1			
	\Rightarrow maximum profit 2 = (72x + 40y) – (9600 + 56x + 28y) = 16x + 12y - 9600				

	Subject to constraints:	1							
	$x + y \le 960$								
	$5x + y \le 2400$								
	$x, y \ge 0$								
24.	Speed of boat in still waters = $x \text{ km/h}$	1							
	Speed of stream = y km/h								
	Distance travelled = $d \text{ km}$								
	Time taken to travel downstream = $\frac{d}{x+y}$								
	Time taken to travel upstream = $\frac{d}{x-y}$								
	Then, $\frac{2d}{x+y} = \frac{d}{x-y} \Rightarrow x : y = 3:1$								
	OR	1							
	Param runs 5 m in 3 seconds								
	\Rightarrow time taken to run 200 m = $\frac{3}{r} \times 200 = 120$ seconds								
	5	1							
	Anuj 's time = 120 – 3 = 117 seconds								
25.	$V_f = 437500, V_i = 350000$	1							
	Nominal rate = $\frac{V_f - V_i}{V_i} \times 100$								
	Vi								
	437500 - 350000	1							
	$= \frac{350000}{350000} \times 100 = 25\%$								
	Section – C								
	Each question carries 3-mark weightage								
26.	$f'(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$	1							
	$\Rightarrow x = 1,2,3$								
	Strictly increasing in $(1,2)\cup(3,\infty)$	1							
	Strictly decreasing in $(-\infty, 1) \cup (2,3)$	1							
27.									
	$\begin{bmatrix} 2500 & 65 \\ 1000 & 50 \end{bmatrix} $ [12700]								
	Daily diet of team $A = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1900 & 50 \\ 2000 & 54 \end{bmatrix} = \begin{bmatrix} 334 \end{bmatrix}$	1.5							
	Team A consumes 12700 calories and 334 g vitamin								
	$\begin{bmatrix} 2500 & 65 \\ 103001 \end{bmatrix}$								
	Daily diet of team B = $\begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1900 & 50 \end{bmatrix} = \begin{bmatrix} 273 \end{bmatrix}$								
		1.5							
	Team B consumes 10300 calories and 273 g vitamin								
28.	$\int dx$								
	$\int \overline{(1+e^x)(1+e^{-x})}$								
		3							
	$= \int \frac{e^{-dx}}{(1+e^{x})^2}$								

	$=\int rac{dt}{t^2}$, where $t = e^x + 1$ and $dt = e^x dx$							
	$=\frac{-1}{t}+C$							
	$=\frac{-1}{1+e^x}+C$ OR							
	$\int_{II}^{x \log(1 + x^2) dx} I$, Integration by parts							
	$= \log (1 + x^2) \cdot \int x dx - \int \left[\frac{d}{dx} \log(1 + x^2) \cdot \int x dx \right] dx$							
	$=\frac{x^2}{2}\log(1+x^2) - \int \left[\frac{2x}{1+x^2} \cdot \frac{x^2}{2}\right] dx$							
	$=\frac{x^2}{2}\log(1+x^2) - \int \frac{x^3}{1+x^2} dx$							
	$=\frac{x^2}{2}\log(1+x^2) - \int [x - \frac{x}{1+x^2}] dx$							
	$=\frac{x^2}{2}\log(1+x^2) - \frac{x^2}{2} + \frac{1}{2}\log(1+x^2) + C$							
	$= \frac{1}{2} [(1+x^2)\log(1+x^2) - x^2] + C$							
29.	Under pure competition, $p_d = p_s$							
	$\Rightarrow \frac{8}{2} - 2 = \frac{x+3}{2}$							
	$\Rightarrow x^{2} + 8x - 9 = 0$	1 5						
	$\Rightarrow x = -9, 1$	1.5						
	$\therefore x = 1$							
	When $r_1 - 1 \rightarrow n_1 - 2$							
	$v_0 = 1 \Rightarrow p_0 = 2$							
	: Produce surplus = $2 - \int_0^1 \frac{x+3}{2} dx = 2 - \left[\frac{x^2}{4} + \frac{3x}{2}\right] = \frac{1}{4}$	1.5						
	OR							
	$p = 274 - x^2$							
	$\Rightarrow R = px = 274x - x^3$							
	$\frac{dx}{dx} = 274 - 3x^2$	15						
	Given MR = $4 + 3x$	L.J						
	In profit monopolist market,							
	$MR = \frac{a\kappa}{dx} \Rightarrow 4 + 3x = 274 - 3x^2$							
	$\Rightarrow x^2 + x - 90 = 0$							

	$\Rightarrow x = -10,9$ $\therefore x = 9$							
	When $x_0 = 9 \Rightarrow p_0 = 193$							
	$\therefore \text{ Consumer surplus} = \int_0^9 (274 - x^2) dx - 193 \times 9$							
	$-[274x - \frac{x^3}{2}]$							
	$\frac{-1274x}{3}$							
	= 486							
30.	Purchase = ₹ 40,00,000							
	Down payment = x							
	$i = \frac{9}{100000000000000000000000000000000000$							
	$l = \frac{1}{1200} = 0.0075, h = 25 \times 12 = 300$	1						
	E = ₹ 30,000							
	$(4000000 - x) \times 0.0075$							
	$\Rightarrow 30000 = \frac{1}{1 - (1.0075)^{-300}}$							
	$(400000 - x) \times 0.0075$							
	$\Rightarrow 30000 =$	2						
	$\Rightarrow x = 424800$							
	Down payment = ₹ 4,24,800							
31.	n = 10 x 2 = 20, S = 10,21,760, $i = \frac{5}{200} = 0.025$, R = ?							
	$S = R \left[\frac{(1+i)^n - 1}{i} \right]$	1.5						
	$\Rightarrow 1021760 = R \left[\frac{(1+0.025)^{20}-1}{1} \right]$							
	$\rightarrow 1021760 - P [\frac{1.6386 - 1}{1}]$							
	$\rightarrow 1021700 - K \left[- 0.025 \right]$							
	$\Rightarrow R = \left[\frac{1017700760000}{0.6386}\right]$							
	⇒ R = ₹ 40,000	1.5						
	Mr Mehra set aside an amount of ₹ 40,000 at the end of every six months							
	Section – D							
	Each question carries 5-mark weightage							
32.	Probability of defective bucket = 0.03							
	n = 100							
	$m = np = 100 \times 0.03 = 3$	1						
	Let Λ = number of defective buckets in a sample of 100							
	$P(x = r) = \frac{r!}{r!}, r = 0, 1, 2, 3,$							
	(i) P (no defective bucket) = P(r = 0) = $\frac{3^0 e^{-3}}{0!} = 0.049$	2						
	(ii) P (at most one defective bucket) = P(r = 0, 1)	2						
	$=\frac{3^{0}e^{-3}}{2!}+\frac{3^{1}e^{-3}}{1!}$	2						
	0! $1!$							

	= 0.049 + 0.147 = 0.196	
	OR	
	X = scores of students, $\mu = 45, \sigma = 5$ $\therefore Z = \frac{X - \mu}{\sigma} = \frac{X - 45}{5}$	1
	(i) When X = 45, $Z = 0$ P (X > 45) = P (Z > 0) = 0.5 \Rightarrow 50% students scored more than the mean score	2
	(ii) When X = 30, $Z = -3$ and when X = 50, $Z = 1$ P (30< X< 50) = P (-3< Z < 1) = P (-3< Z \le 1) = P (-3 < Z \le 0) + P (0 \le Z < 1) = P (0 \le Z < 3) + P (0 \le Z < 1) = 0.4987 + 0.3413 = 0.84 $\Rightarrow 84\%$ students scored between 30 and 50 marks	2
33.	Let x be the number of guests for the booking Clearly, $x > 100$ to avail discount \therefore Profit, P = [4800 $-\frac{200}{10}(x - 100)$] x = 6800x - 20x ²	2
	$\Rightarrow \frac{dP}{dx} = 6800 - 40 \ x \Rightarrow x = 170$	1
	$\operatorname{As} \frac{d^2 P}{dx^2} = -40 < 0, \forall x$	1
	A booking for 170 guests will maximise the profit of the company And, Profit = ₹ 5,78,000	1
	ORP(x) = R(x) - C(x)= 5x - (100 + 0.025x2)	2
	$\Rightarrow P'(x) = 5 - 0.05 x \Rightarrow x = 100$	1
	As $P''(x) = -0.05 < 0, \forall x$	1
	Manufacturing 100 dolls will maximise the profit of the company And, Profit = ₹ 1,50,000	1
34.	Let the number of tables and chairs be x and y respectively (Max profit) $Z = 22x + 18y$ Subject to constraints: $x + y \le 20$ $3x + 2y \le 48$ $x, y \ge 0$	1.5

	$A(0, 20)$ $B(8, 12)$ $(16,0) C$ $y \ge 0$ $x + y \le 20$					
	The feasible region OABCA is closed (bounded)Corner points $Z = 22 x + 18 y$ $O(0,0)$ 0 $A(0,20)$ 360 $B(8,12)$ 392 $C(16,0)$ 352 Buying 8 tables and 12 chairs will maximise the profit	1.5				
35.	$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$ $\Rightarrow A = 9 \Rightarrow A^{-1} \text{ exists}$ And $A^{-1} = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix}$					
	$AX = B \Rightarrow X = A^{-1}B$ $\Rightarrow X = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 110 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 10 \end{bmatrix}$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$	3				
	Section – E Each Case study carries 4-mark weightage					
36.	CASE STUDY - I	 				
a)	Pipe C empties 1 tank in 20 h \Rightarrow 2/5 th tank in $\frac{2}{5} \times 20 = 8$ hours	1				
b)	Part of tank filled in 1 hour = $\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th \Rightarrow time taken to fill tank completely = 10 hours	1				
c)	At 5 am,	2				

	Let the tank be completely filled in 't' hours									
	⇒pipe	e A is opei	ned for 't'	hours						
	pipe B is opened for 't-3' hours									
	And, p	oipe C is o	pened for	· 't-4' hοι	urs					
	\Rightarrow In one hour,									
	part of tank filled by pipe A = $\frac{\iota}{15}$ th									
	part of tank filled by pipe B = $\frac{\overline{t-3}}{15}$ th									
	and, p	oart of tan	k emptied	d by pipe ($C = \frac{t-4}{2}$ th					
	Thor	$efore \frac{t}{t}$	$+\frac{t-3}{t}$	$\frac{-4}{-1}$ - 1	15					
	$\rightarrow t$ -	- 10 5	12 2	20 - 1						
	-→ι- Total	- 10.5 time to fil	l tho tank	– 10 hour	s 30 mini	itas				
	Total			- 10 11001	3 50 mm	1103				
	OR							•		
	6 am,	pipe C is o	opened to	empty ½	filled tan	k				
	Time	to empty	= 10 hour:	s						
	Time	for cleani	ng = 1 hou	ır						
	Part o	of tank fille	ed by pipe	s A and B	in 1 hour	$=\frac{1}{15}+\frac{1}{12}$	$=\frac{3}{20}$ th tank			
	⇒ tim	ie taken to	o fill the ta	ank compl	etely = $\frac{20}{2}$	hours				
	Total	time take	n in the pi	nocess = 1	$0 + 1 + \frac{20}{20}$	= 17 hou	ır 40 minutes			
	10tai			000000 1	3	17 1100				
37.	CASE	STUDY - II								
a)										
		Year	Y	Х	X ²	XY				
		2015	35	-2	4	-70				
		2016	42	-1	1	-42				
		2017	46	0	0	0				
		2018	41	1	1	41				
		2019	48	2	4	96				
	212 10 25									
	a = $\frac{\Sigma Y}{n} = \frac{212}{5} = 42.4$ and b = $\frac{\Sigma XY}{\Sigma X^2} = \frac{25}{10} = 2.5$ 2									
					-					
				$Y_C = 4$	2.4 + 2.5	5X		_		
		OR					I			
		Year	Y	3-year	moving av	/erage				
		2015	35		-					
		2016	42		41					
		2017	46		43					
		2018	41		45					
		2019	48	1	-			1		

		y 231es 50 50 50 50 50 50 50 50 50 50 50 50 50	5 2016	2017 2018 2 Years	Trend Line	→ x			
b)	For year 2022, $Y_{2022} = 42.4 + 2.5(2022 - 2017) = 54.9$ \Rightarrow the estimated sales for year 2022 = ₹ 54,900								1
c)	$Y_{C} = 42.4 + 2.5X$ $\Rightarrow 67.4 = 42.4 + 2.5X$ $\Rightarrow X = 10$							1	
38	CASE STUDY	<u>- III</u>	cur	(2017) 1	LOJ – yC	.ui 202	. /		
20. 2)	CASE STODI								
aj	$\frac{k}{6} + \frac{2k}{6} + \frac{3(1-k)}{6} + \frac{4k}{2} = 1 \Rightarrow k = \frac{1}{4}$								1
b)	P (getting admission on applying at least 2 weeks ahead of application deadline) = P (X = 2,3,4) = $\frac{1}{12} + \frac{3}{8} + \frac{1}{2} = \frac{23}{24}$ [alternate method: 1 – P (X = 1) = 1 – $\frac{1}{24} = \frac{23}{24}$]							1	
c)	x	= week appl	ied a	head of	applica	ation d	eadline		
	X P(X) XP(X)	$\begin{array}{c c} 1 \\ 1 \\ 1 \\ 24 \\ \hline 1 \\ 24 \\ \hline 1 \\ 24 \\ \hline 24 \\ \hline 24 \\ \hline \end{array}$		$\begin{array}{c c} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 1$	2		3 3 8 9 8 8	$\frac{4}{\frac{1}{2}}$	
	$\therefore E(X) = \frac{80}{24} = 3\frac{1}{3}$ weeks							2	
	OR								
	X = Scholarship money awarded for the week applied in, before the deadline								
	Week applied in	1	2		3		4		
	X	9600	120	000	2000	J	50000		

	P(X)	1	1	3	1			
		24	12	8	2			
	XP(X)	9600	12000	60000	50000			
		24	12	8	2			
∴ E(X) = ₹ 33.900								
	., ,							
I								