Sample Question Paper <u>CLASS: XII</u> Session: 2022-23 Applied Mathematics (Code-241)

Time Allowed: 3 hrs

Maximum Marks: 80

General Instructions:

- 1. This question paper contains five sections A, B, C, D and E. Each section is compulsory.
- Section A carries 20 marks weightage, Section B carries 10 marks weightage, Section C carries 18 marks weightage, Section - D carries 20 marks weightage and Section - E carries 3 case-based with total weightage of 12 marks.
 - <u>Section A:</u>
- 3. It comprises of **20 MCQs of 1 mark** each.
- <u>Section B:</u>
- It comprises of 5 VSA type questions of 2 marks each.
 <u>Section C</u>:
- It comprises of 6 SA type of questions of 3 marks each. Section – D:
- It comprises of 4 LA type of questions of 5 marks each.
 <u>Section E:</u>
- 7. It has **3 case studies**. Each case study comprises of 3 case-based questions, where **2 VSA type questions** are of **1 mark** each and **1 SA type question is of 2 marks**. Internal choice is provided in **2 marks** question in each case-study.
- Internal choice is provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section - D. You have to attempt only one of the alternatives in all such questions.

	SECTION – A (All questions are compulsory. No internal choice is provided in this section)	<u>marks</u>
1.	What is the least value of 'x' that satisfies $x \equiv 27 \pmod{4}$, when $27 < x \leq 36$?	
	a) 27 b) 30 c) 31 d) 35	1
2.	Let $p > 0$ and $q < 0$ and $p, q \in Z$, then choose the correct inequality from the given below options to complete the statement: $p + q$ $p - q$ a) >b) \leq c) \geq d) <	1
3.	A machine makes car wheels and in a random sample of 26 wheels, the test statistic is found to be 3.07. As per the t-distribution test (of 5% level of significance), what can you say about the quality of wheels produced by the machine? (Use t ₂₅ (0.05) = 2.06) a) Superior quality b) Inferior quality c) Same quality d) Cannot say	1

4.	For the purpose of t-test of significance, a random sample of size (n) 34 is drawn from a normal population, then the degree of freedom (v) is -						
	a) $\frac{1}{_{34}}$ b) 33 c) 34 d) 35	1					
5.	A person can row a boat along the stream of the river at 10 km/h and against the stream in 6 km/h. What is the speed of the stream flow?						
	a) 1 km/h b) 2 km/h c) 4 km/h d) 5 km/h	1					
6.	Standard deviation of a sample from a population is called a -						
	a) Standard error b) Parameter c) Statistic d) Central limit	1					
7.	Two water supplying trucks – A and B supply water to remote areas. Truck A is carrying 100 litres of water to a village 1.5 km away and truck B is delivering 80 litres of water to another village, 1 km away. Due to bad road conditions, each truck loses 20 ml water while travelling each metre distance. Which truck is able to deliver more water and by how much more? a) Truck A, 20 litres b) Truck B, 20 litres c) Truck A, 10 litres d) Truck B, 10 litres	1					
8.	What is the face value of a sinking fund that yields a dividend of ₹1800 at 10% semi-annually?						
	a) ₹ 3600 b) ₹18000 c) ₹ 24000 d) ₹ 36000	1					
9.	In the given figure, the area bounded by the curve $x = f(y)$, y -axis and abscissa $y = a$ and $y = b$ is equal to - a) $\int_{a}^{b} f(y) dy$ b) $\int_{a}^{b} f(x) dx$ c) $\int_{a}^{b} f(y) dy$ d) $\int_{a}^{b} f(x) dx$ x = f(y) x = f(y) x = f(y) x = f(y) x = f(y) y = a y =	1					
10.	 A factory production is delayed for three weeks due to breakdown of a machine and unavailability of spare parts. Under which trend oscillation does this situation fall under? a) Seasonal b) Cyclical c) Secular d) Irregular 	1					
11.	A newspaper printing machine costs ₹ 4,80,000 and estimated scrap value of ₹ 25,000 at the end of its useful life of 10 years. What is its annual depreciation as per linear method?	1					
	a) ₹4,550 b) ₹45,500 c) ₹50,500 d) ₹61,500						

In the given figure (I), what is the LPP shaded region known	
as? a) Feasible region b) Feasible solution c) Optimal region d) Objective region	1
General solution of differential equation: $y \log y dx - x dy = 0$ is –	
a) $y = \log Cx $ b) $y = e^{ Cx }$ c) $y = e^{-Cx}$ d) $\log y = C + x $	1
An investment of ₹ 10,000 becomes ₹ 60,000 in 4 years, then the CAGR (compound annual growth	
rate) is given by -	1
a) $\frac{\sqrt[4]{6}-1}{100}$ b) $\frac{\sqrt[4]{6}+1}{100}$ c) $[\sqrt[4]{6}-1] \times 100$ d) $[\sqrt[4]{6}+1] \times 100$	
In what ratio shall I add water to the liquid detergent costing ₹ 480 per litre to get resulting mixture worth ₹ 300 per litre?	
a) 5:3 b) 3:8 c) 3:5 d) 5:8	1
A grain whole-seller visits the granary market. While going around to make a good purchase, he takes a handful of rice from random sacks of rice, in order to inspect the quality of farmers produce. The handful of rice taken from a sack of rice for quality inspection is a: a) statistic b) population c) parameter d) sample	1
For predicting the straight-line trend in the sales of scooters (in thousands) on the basis of 6 consecutive years data, the company makes use of 4-year moving averages method. If the sales of scooters for respective years are a, b, c, d, e and f respectively, then which of the following average will <u>not</u> be computed? a) $\frac{a+b+c+d}{4}$ b) $\frac{b+c+d+e}{4}$ c) $\frac{a+c+d+e}{4}$ d) $\frac{c+d+e+f}{4}$	1
In a school, a random sample of 145 students is taken to check whether a student's average calory intake is 1500 or not. The collected data of average calories intake of sample students is presented in a frequency distribution, which is called a: a) Statistics b) Sampling distribution c) Parameter c) Parameter c) Population sampling	1
	a) Feasible regionb) Feasible solutionc) Optimal regiond) Objective regionGeneral solution of differential equation: $ylogy dx - x dy = 0$ is -a) $y = log Cx $ b) $y = e^{ Cx }$ c) $y = e^{-Cx}$ d) $log y = C + x $ An investment of $\exists 10,000$ becomes $\exists 60,000$ in 4 years, then the CAGR (compound annual growth rate) is given by -a) $\frac{\sqrt{10}-1}{100}$ b) $\frac{\sqrt{10}+1}{100}$ c) $[\sqrt{10}-1] \times 100$ d) $[\sqrt{10}+1] \times 100$ In what ratio shall I add water to the liquid detergent costing $\exists 480$ per litre to get resulting mixture worth $\exists 300$ per litre?a) $5:3$ b) $3:8$ c) $3:5$ d) $5:8$ A grain whole-seller visits the granary market. While going around to make a good purchase, he takes a handful of rice from random sacks of rice, in order to inspect the quality of farmers produce. The handful of rice taken from a sack of rice for quality inspection is a:a) statisticb) populationc) parameterd) sampleFor predicting the straight-line trend in the sales of scooters (in thousands) on the basis of 6 consecutive years dat, the company makes use of 4-year moving averages method. If the sales of scooters for respective years are a, b, c, d, e and f respectively, then which of the following average will not be computed?a) $\frac{a+b+c+d}{4}$ b) $\frac{b+c+d+e}{4}$ c) $\frac{a+c+a+e}{4}$ d) $\frac{c+d+e+f}{4}$ In a school, a random sample of 145 students is taken to check whether a student's average calory intake is 1500 or not. The collected data of average calories intake of sample students is presented in a frequency distribution, which is called a:a) Statisticsb) Samplingc) Parameterd) Population

	-		-		ed Assertion(A) and the other labell			
	Reason (R). Seleo below:	t the correct answer to the	ese questi	ions from t	the codes (i), (ii), (iii) and (iv) as give	n		
	 Both A and R are true and R is the correct explanation of the assertion Both A and R are true but R is not the correct explanation of the assertion 							
		ue, but R is false Ilse, but R is true						
0		where and Decade are true and	-	1 hla hadrain	ten aleuren Daebekilitutket Deene			
9.		3 games out of 4 is 25%	апу сарас	Jie badmin	ton players. Probability that Beena			
		• •		denoted by $P(X = r)$ is given by ses success and q denotes failure in each trial.				
	a) (i)	b) (ii)	c)	(iii)	d) (iv)			
0.	rate of interest is <u>Reason</u> (R) : If the	5 10.5%	at the en		flation is 2%, then the effective Ir, then the effective rate of	1		
	a) (i)	b) (ii)	c)	(iii)	d) (iv)			
1.	₹ 2,50,000 cash i	ons are compulsory. In case s equivalent to a perpetuity		al choice, a	attempt any one question only) at the end of each quarter. What is			
	the rate of intere	st convertible quarterly?				2		
2.	Find value of 2a	<u> </u>						
د.		+ $3b - c$, if A = $\begin{bmatrix} 0 & -a \\ a - 8 \\ -c + 2 \end{bmatrix}$	$\begin{bmatrix} -1 & 28 \\ 0 & 3b \\ 2 & 0 \end{bmatrix}$ is	s a skew-sy	vmmetric matrix			
۷.		+ $3b - c$, if A = $\begin{bmatrix} a - 8 \\ -c + 2 \end{bmatrix}$	$\begin{bmatrix} -1 & 28 \\ 0 & 3b \\ 2 & 0 \end{bmatrix}$ is	s a skew-sy	vmmetric matrix			
<.			OR			2		
۷.		al value(s) of x , for which	OR		erminant $\Delta = \begin{vmatrix} 1 & -2 & 5 \\ 2 & x & -1 \\ 0 & 4 & 2x \end{vmatrix}$ is 86.	2		
	There are two re Find the value(s) A book publisher addition to a fixe are ₹ 56 and ₹ 28	al value(s) of x , for which of x sells a hard cover edition of d weekly cost of ₹ 9,600, th g per book respectively. Eac	OR the value of a book f he cost of ch edition	of the dete for ₹ 72 and printing ha requires 5	erminant $\Delta = \begin{vmatrix} 1 & -2 & 5 \\ 2 & x & -1 \\ 0 & 4 & 2x \end{vmatrix}$ is 86. d a paperback edition for ₹ 40. In indcover and paperback editions minutes on the printing machine			
3.	There are two re Find the value(s) A book publisher addition to a fixe are ₹ 56 and ₹ 28 whereas hardcov machine. The pri	al value(s) of x , for which of x sells a hard cover edition of d weekly cost of ₹ 9,600, th g per book respectively. Eac ver binding takes 10 minute	OR the value of a book f the cost of th edition as and pap ding mach	of the dete for ₹ 72 and printing ha requires 5 perback tak ine are ava	erminant $\Delta = \begin{vmatrix} 1 & -2 & 5 \\ 2 & x & -1 \\ 0 & 4 & 2x \end{vmatrix}$ is 86. d a paperback edition for ₹ 40. In indcover and paperback editions minutes on the printing machine es 2 minutes on the binding ilable for 80 hours each week.	2		

	OR					
	In a 200-metre race, Anuj can beat Param by 5 metre or 3 seconds. How much time did Anuj take to complete the race?					
25.	Mitul invested ₹ 3,50,000 in a fund. At the end of the year the value of the fund is ₹ 4,37,500. What is the nominal rate of interest, if the market price is same at the end of the year?	2				
	<u>SECTION – C</u> (All questions are compulsory. In case of internal choice, attempt any one question only)					
26.	Find the interval(s) in which the function $f(x) = \frac{x^4}{4} - 2x^3 + \frac{11x^2}{2} - 6x$, is strictly increasing and strictly decreasing.	3				
27.	Two badminton teams A and B are staying in the same hotel. Team A has 2 male and 3 female players accompanied by 1 coach. Team B comprises of 1 male, 2 female players and 2 coaches. The daily diet requirement (calories and protein) for each person is as given below: Calories Protein Male player 2500 65 g Female player 1900 50 g Coach 2000 54 g Use matrix algebra to calculate the total diet requirement of calories and protein for each team.	3				
28.	Evaluate $\int \frac{dx}{(1+e^x)(1+e^{-x})}$ OR Evaluate $\int x \log(1+x^2) dx$	3				
29.	Under the pure market competition scenario, the demand function p_d and the supply function p_s for a certain commodity are given as $p_d = \frac{8}{x+1} - 2$ and $p_s = \frac{x+3}{2}$ respectively, where p is the price and x is the quantity of the commodity. Using integrals, find the producer's surplus. OR The demand function p for maximising a profit monopolist is given by $p = 274 - x^2$ while the marginal cost is $4 + 3x$, for x units of the commodity. Using integrals, find the consumer surplus					
30.	Surjeet purchased a new house, costing ₹ 40,00,000 and made a certain amount of down payment so that he can pay the balance by taking a home loan from XYZ Bank. If his equated monthly instalment is ₹ 30,000, at 9% interest compounded monthly (reducing balance method) and payable for 25 years, then what is the initial down payment made by him? [Use $(1.0075)^{-300} = 0.1062$]					
31.	10 years ago, Mr Mehra set up a sinking fund to save for his daughter's higher studies. At the end of 10 years, he has received an amount of ₹ 10,21,760. What amount did he put in the sinking fund at the end of every 6 months for the tenure, which paid him 5% p.a. compounded semi-annually? [Use $(1.025)^{20} = 1.6386$]	3				

	<u>SECTION – D</u>	
	(All questions are compulsory. In case of internal choice, attempt any one question only)	
32.	It is known that 3% of plastic buckets manufactured in a factory are defective. Using the Poisson distribution on a sample of 100 buckets, find the probability of: (i) Zero defective buckets (ii) At most one bucket is defective [Use $e^{-3} = 0.049$] OR In a math aptitude test, student scores are found to be normally distributed having mean as 45 and standard deviation 5. What percentage of students have scores - (i) more than the mean score? (ii) between 30 and 50?	5
33.	An event management company charges ₹ 4,800 per guest, for a bulk booking for 100 guests. In addition, it offers a discount of ₹ 200 for each group of 10 guests over and above 100 guest booking. What is the number of guests that will maximise the amount of money the company receives on a booking? What is the maximum profit on such booking? OR To manufacture 'x' number of dolls, a company's total cost function $C(x)$ is given by $C(x) = 100 + 0.025x^2$ and the total revenue function $R(x)$ is described as $R(x) = 5x$. Given that $C(x)$ and $R(x)$ are in thousand rupees, what number of dolls shall be manufactured to maximise the profit of the company? What is the maximum profit?	5
34.	Rahul is at the whole sale market to purchase folding tables and chairs, to later sell them at his furniture shop. He has only ₹ 5,760 to spend and his van has space to carry at the most 20 items. A table costs him ₹ 360 and a chair costs ₹ 240. Back at his shop, he plans to sell a table at a profit of ₹ 22 and a chair at a profit of ₹ 18. Given that he can sell all the items that he purchases, how many tables and chairs shall he purchase in order to maximise his profit?	5
35.	The equilibrium conditions for three competitive markets are described as given below, where p_1, p_2 and p_3 are the equilibrium price for each market respectively. $p_1 + 2p_2 + 3p_3 = 85$ $3p_1 + 2p_2 + 2p_3 = 105$ $2p_1 + 3p_2 + 2p_3 = 110$ Using matrix method, find the values of respective equilibrium prices. SECTION – E	5
	(All questions are compulsory. In case of internal choice, attempt any one question only)	
36.	CASE STUDY – I An overhead water tank has three pipes A, B and C attached to it (as shown in figure (II)). The inlet pipes A and B can fill the empty tank independently in 15 hours and 12 hours respectively. The outlet pipe C alone can empty a full tank in 20 hours. Based on the above information, answer the following questions. Show steps to support your answers. FIGURE (II)	pipe B () () () () () () () () () () () () ()

a)	For a routine cleaning of the tank, the tank needs to be emptied. If pipes A and B are closed at the time when the tank is filled to two-fifth of its total capacity, how long will pipe C take to empty the tank completely?							
b)		take for th	ne empty ta	nk to fill con	npletely, if	all the three p	ipes are opened	1
c)	On a given day, pipes A, B and C are opened (in order) at 5 am, 8 am and 9 am respectively, to fill the empty tank. In how many hours will the tank be filled completely? OR							
		our's clear	ing time, ta	nk is filled c			e tank. After closing the B together. What is the	2
37.	CASE STUDY – I	<u>l</u>						
	 consideration. Such analytical studies can benefit a business for forecasting or prediction of future estimated sales or production. Mathematically, for finding a line of best-fit to represent a trend, many methods are available. Methods like moving-averages and least-squares squares are some of the techniques to predict such trends. Mrs. Shamita runs a bread factory and the record of her sales of bakery items for the period of 2015 - 2019 is as follows: 							
	Year	2015	2016	2017	2018	2019		
	Sales (in ₹ thousands)	35	42	46	41	48	S BAKERY	
a)		t your ansv 2017 as ori	wers.	hod of least	-squares to	o find the best	-fit trend line equation	
	for Mrs. Shamita's business. Show the steps of your working. OR Demonstrate the technique to fit the best-suited straight-line trend by the method of 3-years moving averages. Also draw the trend line.						method of 3-years	2
b)	What are the es	stimated sa	ales for Mrs	. Shamita's k	ousiness for	r year 2022?		1
c)		-	ow her busir	ness to yearl	y sale of ₹	67400. In whic	ch year will she be able	1
38.	to reach her tar CASE STUDY – I	-						
	According to an educational board survey, it was observed that class XII students apply at least one to four weeks ahead of colleges application deadline. Let X represent the week when an average student applies ahead of a college's application deadline and the probability of student to get admission in the college $P(X = x)$ is given as follows:							

	$P(X = x) = \begin{cases} \frac{kx}{6} & when \ x = 0, 1 \ or \ 2\\ \frac{(1-k)x}{6} & when \ x = 3\\ \frac{kx}{2} & when \ x = 4\\ 0 & when \ x > 4 \end{cases}$ Where k is a real number. Based on the above information, answer the following questions. Show steps to support your answer	rs.
a)	Find the value of k.	1
b)	What is the probability that Sonali will get admission in the college, given that she applied at least 2 weeks ahead of application deadline?	1
c)	Calculate the mathematical expectation of number of weeks taken by a student to apply ahead of a college's application deadline.	
	To promote early admissions, the college is offering scholarships to the students for applying ahead of deadline as follows: ₹ 50000 for applying 4 weeks early, ₹ 20000 for applying 3 weeks early, ₹ 12000 for applying 2 weeks early, and ₹ 9600 for applying 1 week early What is the expected scholarship offered by the college?	2
