Physics Master Academy Only Teaching Noting Else.

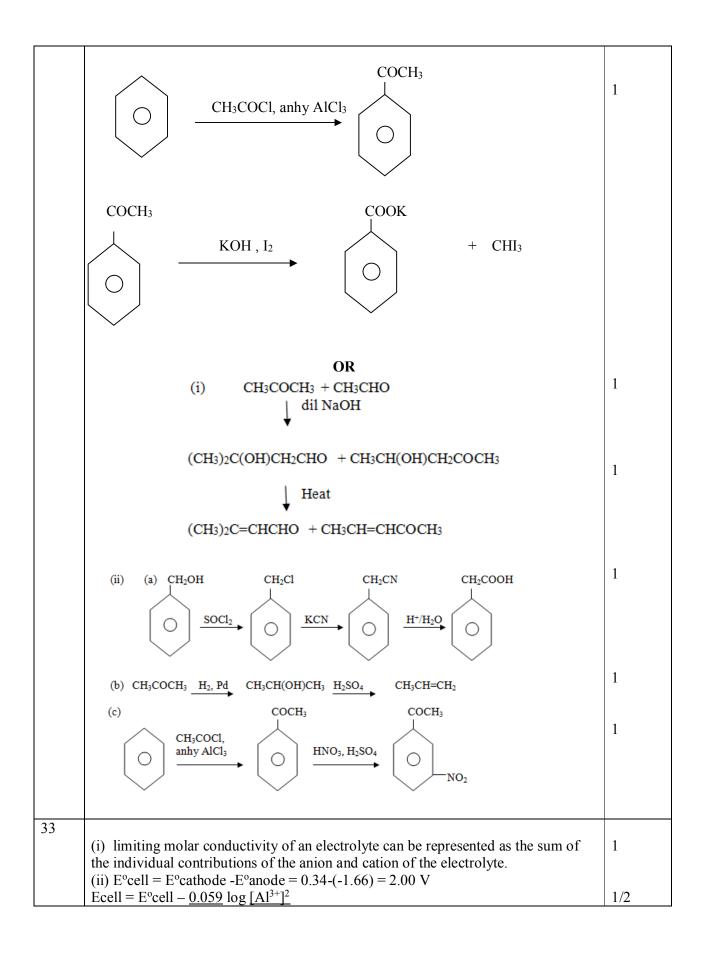
MARKING SCHEME

SAMPLE PAPER 1

SECTION A

Q.No.	Value Point	Marks
1(i)	D	1
(ii)	В	
	OR	1
	A	
(iii)	A	1
(iv)	С	1
2(i)	В	1
(ii)	A	1
(iii)	A	1
(iv)	A	
	OR	1
	В	
3	С	1
4	D	
	OR	1
	С	
5	С	1
6	В	
	OR	1
	В	
7	В	
	OR	1
	D	
8	A	
	OR	1
-	A	
9	С	1
10	A	1
11	A	1
12	A	1
13	D	1
14	В	
	OR	1
1.5	В	
15	В	1
16	A	1

SECTION B, C, D


Q.No.	VALUE POINTS	MARKS
	SECTION B	
17	Nitro group at ortho position withdraws the electron density from the benzene ring and thus facilitates the attack of the nucleophile on haloarene.	2
	$ \begin{array}{c} \begin{array}{c} Cl & O \\ OH + \\ \end{array} \end{array} \begin{array}{c} Cl & OH \\ OH \\ \end{array} \begin{array}{c} Cl & OH \\ \end{array} \begin{array}{c} O$	
	OR	
	(i) NH_2 N_2Cl Cl N_2Cl Cu_2Cl_2 Cu_2Cl_2	1
	(ii) CH ₃ CH(Br)CH ₃ alc KOH CH ₃ CH=CH ₂ HBr, organic peroxide CH ₃ CH ₂ CH ₂ Br	1
18	$\Delta Tb = K_b m \Delta Tb = 101.04-100 = 1.04 ^{\circ}C$ or m= 1.04 /0.52 = 2 m 2 m solution means 2 moles of solute in 1 kg of solvent. 2 m aq solution of urea means 2 moles of urea in 1kg of water.	1
	No. of moles of water = $1000/18 = 55.5$ Relative lowering of VP = x_2 (where x_2 is mole fraction of solute) Relative lowering of VP = n_2/n_1+n_2 (n_2 is no. of moles of solute, n_1 is no. of moles of solvent) = $2/2+55.5 = 2/57.5 = 0.034$	1/2
19	(i) $t_{2g}^{4}e_{g}^{2}$ Paramagentic (ii)Dichloridobis(ethane-1,2-diamine)cobalt(III)nitrate OR (i)Square planar (ii)Cu ²⁺ = 3d ⁹ 1 unpaired electron so $\sqrt{1(3)}$ = 1.73BM	1/2, 1/2 1 1
20	Reaction is a complex reaction. Order of reaction is 1.5. Molecularity cannot be 1.5, it has no meaning for this reaction. The reaction occurs in steps, so it is a complex reaction. (ii)units of k are mol ^{-1/2} L ^{1/2} s ⁻¹	1/2

	OR	
	Ans: let the rate law expression be Rate = $k [P]^x [Q]^y$	
	from the table we know that	
	Rate $1 = 3.0 \times 10^{-4} = k (0.10)^{x} (0.10)^{y}$	
	Rate $2 = 9.0 \times 10^{-4} = k (0.30)^{x} (0.30)^{y}$	
	Rate $3 = 3.0 \times 10^{-4} = k (0.10)^x (0.30)^y$	
	Rate 1/ Rate $3 = (1/3)^y$ or $1 = (1/3)^y$	
	So $y = 0$	1/2
	Rate $2/\text{Rate } 3 = (3)^x \text{ or } 3 = (3)^x$, 2
	So $x = 1$	1/2
	Rate = k [P]	1
21	$k = 0.693/t_{1/2}$ $k = 0.693/5730 \text{ years}^{-1}$	1/2
	$t = 2.303 \log Co$	/2
	k Ct	1/2
	let $Co = 1$ $Ct = 3/10$ so $Co/Ct = 1/(3/10) = 10/3$	
	$t = 2.303 \times 5730 \log 10$	1/2
	0.693 3	1/
	t = 19042 x (1-0.4771) = 9957 years	1/2
22	$CH_3 - CH - CH - CH_3 \xrightarrow{H^+} CH_3 - CH - CH - CH_3$	
		1/2
	Ch ₃ On Ch ₃ On ₂	
	*	1/2
	$CH_3 - CH - CH_3 \xrightarrow{-H_2O} CH_3 - CH - \overset{+}{C}H - CH_3$	7/2
	ĊH ₃	
	(H)	
	$CH_3 - C - \overset{+}{C}H - CH_3 \xrightarrow{12-\text{hydride shilt}} CH_3 - \overset{+}{C} - CH_2 - CH_3$	1/2
	CH ₃ CH ₃	
	Br	
	$CH_3 - \stackrel{+}{C} - CH_2 - CH_3$ $Br^- \longrightarrow CH_3 - C - CH_2 - CH_3$	1/2
	CH ₃ CH ₃	
	2009	
23	XeF ₆	1
	Central atom Xe has 8 valence electrons, it forms 6 bonds with F and has 1 lone pair. According to VSEPR theory, presence of 6 bp and 1 lp results in	
	distorted octahedral geometry	1

	F F F	
24.	Racemic mixture will be given by 2 chlorobutane as it is an optically active compound.	1
	When 2 chlorobutane undergoes S_N^1 reaction, both front and rear attack are possible, resulting in a racemic mixture	1
25	Let no. of Atoms of element P be x No. of tetrahedral voids = 2x No. Of octahedral voids = x	1/2
	Atoms of Q = $1/3 (2x) + x = 5x/3$	1/2
	$P_{x}Q_{5x/3}$ $P_{3}Q_{5}$	1
	SECTION C	
26	 (i)Due to large surface area and ability to show variable oxidation states (ii)Due to high value of third ionisation enthalpy (iii) Mo(VI) and W(VI) are more stable than Cr(VI). OR (i) The general trend towards less negative E° V values across the series is related to the general increase in the sum of the first and second ionisation enthalpies. (ii) The high energy to transform Cu(s) to Cu²⁺ (aq) is not balanced by its hydration enthalpy. (iii) The stability of the half-filled d sub-shell in Mn²⁺ and the completely filled d¹⁰ configuration in Zn²⁺ are related to their more negative E° V values 	1 1 1 1
27	(i) Aniline, <i>N</i> -ethylethanamine, Etanamine (ii)Ethanamine, ethanol, ethanoic acid (iii) N, N dimethylmethanamine, methanamine, N-methylmethanamine OR (i) N-methyletahnamine is a secondary amine. When it reacts with benzenesulphonyl chloride, it forms N- Ethyl -N methyl sulphonamide while and	1 1 1

	N,N-dimethyl etahnanmine is a tertiary amine it does not react with benzenesulphonyl chloride.	
	(ii) NO ₂ NH ₂ NH ₂	
	H_2/N_1 Br_2/H_2O Br Br	1
	(iii)Butan-1-ol Alcohol forms stronger hydrogen bonds with water than formed by amine due to higher electronegativity of O in alcohol than N in amine	1/2
		1/2
28	We know that $d = zM/N_a a^3$ For fcc, $z=4$ therefore $d = 4 \times M / Na (3.5 \times 10^{-8})^3 \text{ g/cm}^3$ For bcc, $z=2$ therefore $d' = 2 \times M / Na (3.0 \times 10^{-8})^3 \text{ g/cm}^3$ $d/d' = 4/(3.5 \times 10^{-8})^3 / 2/(3.0 \times 10^{-8})^3 = 1.26:1$	1/2 1 1 1/2
29	(i) CH ₃ CH ₂ -COOH (CH ₂) ₄ - NH ₂ HOOC -CH - N - C - C H - N - C - CH - NH ₂ H O H O	1
	CH ₂ COOH CH ₃ (CH ₂) ₄ - NH ₂ HOOC —CH — N — C — CH — N— C — CH — NH ₂ H O H O	1
	(ii) H H ₃ N-C-COO- CH ₃	1
30	i. Arrange the following in decreasing order of bond dissociation enthalpy $Cl_2 > Br_2 > F_2 > I_2$	1
	ii. Bi does not form $p\pi$ - $p\pi$ bonds as its atomic orbitals are large and diffuse so effective overlapping is not possible	1
	iii.Due to small size of oxygen, it has greater electron electron repulsions	1
31.	SECTION D	
31.	(i) (a) $3Cu + 8 \text{ HNO}_3(\text{dilute}) \rightarrow 3Cu(\text{NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O}$ (b)	1

	(ii) 'X' is Helium It is used as a diluent for oxygen in modern diving apparatus because of its very low solubility in blood. It monoatomic having no interatomic forces except weak dispersion forces and has second lowest mass therefore bp is lowest. OR (a) H ₂ Te, H ₂ Se, H ₂ S, H ₂ O (b) [Fe (H ₂ O) ₅ (NO)] ²⁺ (ii) A is chlorine gas Its bleaching action is due to oxidation. Cl ₂ + H ₂ O → 2HCl + O , Coloured substance + O → Colourless substance 6 NaOH + 3Cl ₂ → 5NaCl + NaClO ₃ + 3H ₂ O	1 1 1 1 1 1 1 1 1 1 1
32	A: C≡ CH B: COCH ₃ C: COOK D: CHI ₃	½ each
	$C \equiv CH$ $HgSO_4, H_2SO_4$ $COCH_3$	1

 $[Cu^{2+}]^3$ n 1 Here n = 6 $\frac{1}{2}$ Ecell = $2 - \underline{0.059} \log [0.15]^2$ $[0.025]^3$ 1 $= 2 - 0.059/6 \left(2 \log 0.15 - 3 \log 0.025 \right)$ = 2 - 0.059/6 (-1.6478 + 4.8062) = 2 - 0.0311 = 1.9689V1 OR (i) MnO_4^- 1 (ii)(a) Molar conductivity of a solution at a given concentration is the conductance 1 of the volume V of solution containing one mole of electrolyte kept between two electrodes with area of cross section A and distance of unit length. (b) Strong electrolyte, For strong electrolytes, Λm increases slowly with dilution 1 (c) $\Lambda m = \Lambda m^{\circ} - A c^{1/2}$ Therefore $\Delta m^{\circ} = 150 \text{ S cm}^2 \text{ mol}^{-1}$ 1 (d) 1 150.0 149.8 149.4 149.0 Λ₌/(S cm²mol⁻¹) 148.6 148.2 147.8 147.4 147.0 .005 .010 .015 .020 .025 .030 .035 c1/2/(mol/L)1/2 $A = -\text{slope} = -(149 - 147.8/0.010 - 0.022) = 100 \text{ S cm}^2 \text{ mol}^{-1}/(\text{mol/L}^{-1})^{1/2}$.