Physics Master Academy Only Teaching Noting Else.

MARKING SCHEME

1	No α H is present		
2	Ethanol will be converted into ethanoic acid.		
3	[Cr(H ₂ O) ₄ Cl ₂]Cl		
	Tetraaquadichloridochromium(III) chloride		
4	The Brownian movement has a stirring effect, which does not allow the	1	
	particles to settle.		
5	$e^{-E_a/RT}$ Corresponds to the fraction of molecules that have kinetic energy		
	g reater than F_{-}		
6	(i) Vinvl chloride does not respond to NaOH and silver nitrate test because of	1	
Ŭ	nartial double bond character due to resonance		
	(ii) Hydride ion / H ⁻	1	
7	0.05 MAL(SO) has bished (see the estate		
	0.05 M Al (SO) $AT \propto No of particles AT is concentration$		
	0.05 W Al ₂ (30 ₄) ₃ : $i = 5$, $\Delta I_f \propto 100$ of particles, $\Delta I_f = 100$ concentration	1/2	
	$= 5 \times 0.05 = 0.25$ moles of ions		
	$0.1 \text{ M} \text{ K}_{3}[\text{Fe}(\text{CN})_{6}] : 1 = 4,$	1/2	
	$= 4 \times 0.1 = 0.4$ moles of ions		
8	$2Cr(s) + 3Fe^{2+}(aq.) \rightarrow 3Fe(s) + 2Cr^{3+}(aq.)$	1/2	
	n = 6		
	$[Cr^{3+}]^2$	1/2	
	$E_{Cell} = E_{Cell} - \frac{1}{nF} \log \frac{1}{\left[Fe^{2+1}\right]^3}$		
	0.050 $[10^{-1}]^2$	1/	
	$E_{Cell} = 0.30 - \frac{0.059}{5} \log \frac{100}{5}$	1/2	
	$6 [10^{-2}]^{5}$	1/	
	E _{Cell} = 0.26 V	/2	
	OR		
	1000		
	$\wedge_m = \frac{1000 \kappa}{1000 \kappa}$		
	^m C	1/2	
	$\wedge = \frac{1000 x 4.1 x 10^{-5}}{1000 x 4.1 x 10^{-5}} = 41 \text{ S cm}^2 \text{ mol}^{-1}$		
	10^{-3}		
	$\alpha = \frac{\Lambda_m^c}{m}$	1/2	
	$\alpha - \frac{1}{\Lambda_m^0}$		
	41 0.105		
	$\alpha = \frac{1}{390.5} = 0.105$	1/2	
		1/2	
	(i) Outbank and a sid on basting discuss discusses in	1	
9	(i) Urthophosphorus acid on heating disproportionates to give		
1		1	

	$4H_3PO_3 \xrightarrow{heat} PH_3 + 3H_3PO_4$				
	(ii) When XeF_6 undrgoes complete hydrolysis, it forms XeO_3 .				
	$XeF_6 + 3H_2O \rightarrow 6HF + XeO_3$	1			
10	(i) $(r_{1}O_{2})^{2}$	1			
10	(ii) Cerium	1			
11	(i) 2,5-Dimethylhexane.				
	(ii)1-Methyl-1-iodocyclohexane.				
	(iii) Nitroethane.				
12	$\Delta T_f = i K_f m$				
	$2.12 = i \frac{5.12 \times 2.5 \times 1000}{2.12}$				
	122 x 25				
	i- 0 505				
	for association	1/2			
	α				
	$i=1-\frac{1}{2}$	1/2			
	$\alpha = 0.99$				
	Percentage association of benzoic acid is 99.0%				
12	(i) Recause of H-bond formation between alcobal and water molecule				
13	(ii) Nitro being the electron withdrawing group stabilises the phenoxide ion.				
	(iii) side product formed in this reaction is acetone which is another important				
	organic compound.				
14	$t = \frac{2.303}{\log \frac{[R]_0}{1}}$				
	$k \xrightarrow{\sim S} [R]$				
	$t = \frac{2.303}{\log - 1} \log \frac{1}{\log - 1}$	1			
	60 0.0625	1			
	t = 0.0462 s				
15	(i) (P' is a strong alactrolyta	1			
12	(1) B is a strong electrolyte is already dissociated into ions, but on dilution	1			
	interionic forces are overcome, ions are free to move. So there is	-			
	slight increase in molar conductivity on dilution.				
	(ii) On anode water should get oxidised in preference to Cl ⁻ , but due				
	to overvoltage/ overpotential Cl ⁻ is oxidised in preference to	1			
	water.				
16	(i) $\frac{x}{k} = kC^{\frac{1}{n}}$	1			
	m				
	(ii) The charge on the sol particles is due to				
	Electron capture by sol particles during electrodispersion.	1			
	Preferential adsorption of ions from solution.	*			
	Formulation of electrical double layer.				
	(iii) Molybdenum acts as a promoter for iron	1			

21	(i)	$t_{2g}^4 e_g^0$	1	
	(ii)	sp ³ d ²	1	
	(iii)	optical isomerism	L	
22	(i)	Cr ²⁺	1	
	(ii) (:::)	Sc^{-3+}	1	
	(i) The high energy to transform Cu(s) to Cu ²⁺ (aq) is not balanced by its hydration enthalpy.			
	(ii)	Mn ²⁺ has d ⁵ configuration(stable half-filled configuration)		
	(iii)	d ⁴ to d ³ occurs in case of Cr ²⁺ to Cr ³⁺ . (More stable t_{2g}^3) while it		
		changes from d ⁶ to d ⁵ in case of Fe ²⁺ to Fe ³⁺ .		
23	(i)	Equanil, Iproniazid, phenelzine(any two)	1/2+1/2	
	(ii)	empathetic, caring, sensitive or any two values can be given.	1/ 1/	
	()		/2 +/2	
	(iii)They should talk to him, be a patient listener, can discuss the matter with the			
	psychologist.			
	and the person suffers from depression.			
24	(a) (i) $I_2 < F_2 < Br_2 < Cl_2$			
	(II) $H_2U < H_2S < H_2Se < H_2Ie$ (b) Gas A is Ammonia / NH			
	(5)		-	
	(i) $Cu^{2+}(aq) + 4 NH_3 (aq) - [Cu(NH_3)_4]^{2+} (aq)$	1	
	(ii) $ZnSO_4(aq) + 2NH_4OH(aq) \rightarrow Zn(OH)_2(s) + (NH_4)_2SO_4(aq)$			
	OP			
	(a) (CIF	1	
			1	
	(b)	-		
	O OH HO Pyrosulphuric acid (Oleum) (H ₂ S ₂ O ₇)			
	, .			
	(c) I	N_2O_4	1	
	(d) [Bleaching action of chlorine is due to oxidation.	1	
		$\mathcal{L}_{l_2} + \mathcal{H}_2 \mathcal{O} \to \mathcal{D} \mathcal{H} \mathcal{C}_l + [\mathcal{O}]$	72 1/2	
	(e) ($3HNO_2 \rightarrow HNO_3 + H_2O + 2NO$	1	
			-	

	HCN	+ OH \rightarrow :CN + H ₂ O				
		$ \begin{array}{c} \delta \\ \bullet \\$				
26	(i)	Ferrimagnetism.	1			
		paramagnetic.				
	(ii)	r = 0.414 R	1			
	(iii)	$r = \frac{\sqrt{3}}{4}a$	1			
		$\sqrt{3}$ 2165	1/			
		$r = \frac{1}{4} x 316.5$	1/2 1/2			
		r = 136.88 pm	/2			
	(i)	Schottky defect				
		It is shown by ionic substances in which the cation and anion are				
		of almost similar sizes.	-			
		$\sqrt{3}$	1			
	(11)	$r = \frac{1}{4}a$	1			
	(iii)	$\rho = \frac{zM}{a^3 N_A}$	1/2			
	$8.92 = {(3.0)}$	$\frac{z \times 63}{608 \times 10^{-8})^3 6.022 \times 10^{23}}$	1			
	z = 4 So it is face centred cubic lattice					
			1/2			

CBSE SAMPLE PAPER CHEMISTRY-2017-18

MM: 70

BLUE PRINT

TIME 3 HRS

No	CHAPTER	VSA	SA-1	SA-11	VBQ	LA	TOTAL
1	SOLID STATE					1(5) (U)	
2	SOLUTIONS		1(2) (U)	1(3) (A)			
3	ELECTROCHEMISTRY		1(2) (A)	1(3) (U)			9(23)
4	CHEMICAL KINETICS	1(1) (R)		1(3) (A)			_
5	SURFACE CHEMISTRY	1(1) (R)		1(3) (R)			
6	EXTRACTION OF METALS			1(3) (U)			
7	p-BLOCK		1(2) (U)			1(5) (A)	
8	d AND f BLOCK ELEMENTS		1(2) (R)	1(3) (E&MD)			
9	COORDINATION CHEMISTRY	1(1) Hots		1(3) Hots			7(19)
10	HALOALKANES AND HALOARENES		1(2) (A)	1(3) (A)			
11	ALCOHOLS, PHENOLS AND	1(1) (E&MD)		1(3) (U)			
	ETHERS						_
12	ALDEHYDES, KETONES AND	1(1)Hots				1(5)	
	CARBOXYLIC ACID					(E&MD)	_
13	ORGANIC COMPOUNDS			1(3) (A)			
	COTAINING NITROGEN						
14	BIOMOLECULES			1(3) (U)			10(28)
15	POLYMERS			1(3) (E&MD)			
16	CHEMISTRY IN EVERY DAY LIFE				1(4) (E&MD)		
	Total						26(70)

R-Recall; U-Understanding; A-Application, Hots- Higher Order Thinking Skills-;

E&MD-Evaluation and multidisciplinary