Physics Master Academy - Only Teaching Noting Else.

Marking Scheme Class XII						
Class XII Mathematics (Code – 041)						
Section : A (Multiple Choice Questions- 1 Mark each)						
Question No	Answer	Hints/Solution				
1.	(c)	In a skew-symmetric matrix, the (i, j) th element is negative of the (j, i) th element. Hence, the (i, i) th element = 0				
2.	(a)	AA' = A A' = (-3)(-3) = 9				
3.	(b)	The area of the parallelogram with adjacent sides AB and $AC =$				
		$ \overrightarrow{AB} \times \overrightarrow{AC} $. Hence, the area of the triangle with vertices A, B, C $=\frac{1}{2} \overrightarrow{AB} \times \overrightarrow{AC} $				
4.	(c)	The function f is continuous at $x = 0$ if $\lim_{x\to 0} f(x) = f(0)$ We have $f(0) = k$ and				
		$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos}{8x^2} = \lim_{x \to 0} \frac{2\sin^2 2x}{8x^2} = \lim_{x \to 0} \frac{\sin^2 2x}{4x^2}$				
		$= lim_{x \to 0} \left(\frac{sin2x}{2x}\right)^2 = 1$ Hence, k =1				
5.	(b)	$\frac{x^2}{2} + \log x + C\left(\because f(x) = \int \left(x + \frac{1}{x}\right) dx\right)$				
6.	(c)	The given differential equation is $4\left(\frac{dy}{dx}\right)^3 \frac{d^2y}{dx^2} = 0$. Here, m = 2				
		and $n = 1$ Hence, $m + n = 3$				
7.	(b)	The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it.				
8.	(a)	Scalar Projection of $3\hat{\imath} - \hat{\jmath} - 2\hat{k}$ on vector $\hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ $= \frac{(3\hat{\imath} - \hat{\jmath} - 2\hat{k}).(\hat{\imath} + 2\hat{\jmath} - 3\hat{k})}{ \hat{\imath} + 2\hat{\jmath} - 3\hat{k} } = \frac{7}{\sqrt{14}}$				
9.	(c)	$\int_{2}^{3} \frac{x}{x^{2}+1} = \frac{1}{2} [log(x^{2}+1)]_{2}^{3} = \frac{1}{2} (log10 - log5) = \frac{1}{2} log\left(\frac{10}{5}\right)$ $= \frac{1}{2} log2$				
10.	(c)	$\frac{-\frac{1}{2}\log 2}{(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}}$				
10.	(d)	$\frac{(AD - f)^2 - (D - f)^2 A^2 - DA}{The minimum value of the objective function occurs at two}$				
		adjacent corner points (0.6, 1.6) and (3, 0) and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points.				
12.	(d)	$2 - 20 = 2x^2 - 24 \implies 2x^2 = 6 \implies x^2 = 3 \implies x = \pm\sqrt{3}$				
13.	(b)	$ adjA = A ^{n-1} \Rightarrow adjA = 25$				
14.	(c)	$ adjA = A ^{n-1} \implies adjA = 25$ P(A' \cap B') = P(A') \times P(B') (As A and B are independent, A' and B' are also independent.) = 0.7 \times 0.4 = 0.28				
15.	(c)	$ydx - xdy = 0 \implies ydx - xdy = 0 \implies \frac{dy}{y} = \frac{dx}{x}$				
		$\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$ $\Rightarrow \log y = \log x K \Rightarrow y = x K \Rightarrow y = \pm Kx \Rightarrow y = Cx$				
		$ \Rightarrow \log y = \log x K \Rightarrow y = x K \Rightarrow y = \pm Kx \Rightarrow y = Cx$				

16		• -]	1				
16.	(a)	$y = \sin^{-1}x$					
		$\left \frac{uy}{dx} = \frac{1}{\sqrt{1-x^2}} \Longrightarrow \sqrt{1-x^2} \cdot \frac{uy}{dx} = 1 \right $	$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \Longrightarrow \sqrt{1 - x^2} \cdot \frac{dy}{dx} = 1$				
		Again, differentiating both sides w. r. to x, we get					
		$\sqrt{1 - x^2} \frac{d^2 y}{dx^2} + \frac{dy}{dx} \cdot \left(\frac{-2x}{2\sqrt{1 - x^2}}\right) = 0$					
		Simplifying, we get $(1 - x^2)y_2 = xy_1$					
17.	(b)	$\left \vec{a} - 2\vec{b} \right ^2 = (\vec{a} - 2\vec{b}).(\vec{a} - 2\vec{b})$					
		$\left \vec{a} - 2\vec{b} \right ^2 = \vec{a} \cdot \vec{a} - 4\vec{a} \cdot \vec{b} + 4\vec{b} \cdot \vec{b}$					
		$= \vec{a} ^2 - 4\vec{a}.\vec{b} + 4 \vec{b} ^2$					
		=4-16+36=24					
		$\begin{vmatrix} \vec{a} - 2\vec{b} \end{vmatrix}^2 = 24 \implies \vec{a} - 2\vec{b} = 2\sqrt{6}$ The line through the points (0, 5, -2) and (3, -1, 2) is					
18.	(b)						
		$\frac{x}{3-0} = \frac{y-5}{-1-5} = \frac{z+2}{2+2}$					
		$or, \frac{x}{3} = \frac{y-5}{-6} = \frac{z+2}{4}$					
		Any point on the line is $(3k, -6k + 5, 4k - 2)$, where k	is an				
		arbitrary scalar.	15 all				
		$3k = 6 \implies k = 2$					
10		The z-coordinate of the point P will be $4 \times 2 - 2 = 6$.11.1				
19.	(c)	$sec^{-1}x$ is defined if $x \le -1$ or $x \ge 1$. Hence, $sec^{-1}2x$	will be				
		defined if $x \le -\frac{1}{2}$ or $x \ge \frac{1}{2}$.					
		Hence, A is true. The range of the function $aac^{-1}r$ is $[0, \pi] = {\pi \choose 2}$	The range of the function $\sec^{-1}x$ is $[0, \pi] - \{\frac{\pi}{2}\}$				
		R is false.					
20.	(a)	The equation of the x-axis may be written as $\vec{r} = t\hat{i}$. He	ence, the				
		acute angle θ between the given line and the x-axis is given by					
		$\cos\theta = \frac{ 1 \times 1 + (-1) \times 0 + 0 \times 0 }{\sqrt{1^2 + (-1)^2 + 0^2} \times \sqrt{1^2 + 0^2 + 0^2}} = \frac{1}{\sqrt{2}} \Longrightarrow$	$\theta = \frac{\pi}{2}$				
		$\sqrt{1^2 + (-1)^2 + 0^2} \times \sqrt{1^2 + 0^2 + 0^2} \sqrt{2}$	4				
		ECTION B (VSA questions of 2 marks each)					
21.			.1				
		$n\left(\frac{13\pi}{7}\right)] = \sin^{-1}\left[\sin\left(2\pi - \frac{\pi}{7}\right)\right]$					
	$= sin^{-1}[$	$\sin\left(-\frac{\pi}{7}\right)] = -\frac{\pi}{7}$	1				
	T .						
	-	Let $y \in N(\text{codomain})$. Then $\exists 2y \in N(\text{domain})$ such that					
		$\frac{2y}{2} = y$. Hence, f is surjective.	1				
		(domain) such that $f(1) = 1 = f(2)$ f is not injective.	1				
22.		epresent the height of the street light from the ground. At					
	any time	t seconds, let the man represented as ED of height 1.6 m					
		stance of x m from AB and the length of his shadow EC					
	be y m.	milarity of triangles, we have $\frac{4}{1.6} = \frac{x+y}{y} \Rightarrow 3y = 2x$	1/2				
	Come on	$\frac{1.6}{y} = \frac{y}{2x}$					

	Differentiating both sides w.r.to t, we get $3\frac{dy}{dt} = 2\frac{dx}{dt}$ $\frac{dy}{dt} = \frac{2}{3} \times 0.3 \Rightarrow \frac{dy}{dt} = 0.2$ At any time t seconds, the tip of his shadow is at a distance of $(x + y)$ m from AB. The rate at which the tip of his shadow moving	1⁄2
	$= \left(\frac{dx}{dt} + \frac{dy}{dt}\right)m/s = 0.5 m/s$ The rate at which his shadow is lengthening	1/2
	$=\frac{dy}{dt}m/s=0.2m/s$	1/2
23.	$= \frac{dy}{dt} m/s = 0.2 m/s$ $\vec{a} = \hat{\imath} - \hat{\jmath} + 7\hat{k} \text{ and } \vec{b} = 5\hat{\imath} - \hat{\jmath} + \lambda\hat{k}$ Hence $\vec{a} + \vec{b} = 6\hat{\imath} - 2\hat{\jmath} + (7 + \lambda)\hat{k}$ and $\vec{a} - \vec{b} = -4\hat{\imath} + (7 - \lambda)\hat{k}$	1/2
	$\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ will be orthogonal if, $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0$ i.e., if, $-24 + (49 - \lambda^2) = 0 \Longrightarrow \lambda^2 = 25$	1/2
	i.e., if, $\lambda = \pm 5$	1
	OR The equations of the line are $6x - 12 = 3y + 9 = 2z - 2$, which, when written in standard symmetric form, will be $\frac{x-2}{\frac{1}{2}} = \frac{y-(-3)}{\frac{1}{2}} = \frac{z-1}{\frac{1}{2}}$	1/2
	Since, lines are parallel, we have $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ Hence, the required direction ratios are $(\frac{1}{6}, \frac{1}{3}, \frac{1}{2})$ or (1,2,3) and the required direction cosines are $(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}})$	1/2 1
24.	$y\sqrt{1-x^2} + x\sqrt{1-y^2} = 1$ Let $sin^{-1}x = A$ and $sin^{-1}y = B$. Then $x = sinA$ and $y = sinB$ $y\sqrt{1-x^2} + x\sqrt{1-y^2} = 1 \implies sinBcosA + sinAcosB = 1$	1/2
	$\Rightarrow \sin(A+B) = 1 \Rightarrow A+B = \sin^{-1}1 = \frac{\pi}{2}$ $\Rightarrow \sin^{-1}x + \sin^{-1}x = \frac{\pi}{2}$	
	$\Rightarrow \sin^{-1}x + \sin^{-1}y = \frac{\pi}{2}$	1/2
	Differentiating w.r.to x, we obtain $\frac{dy}{dx} = -\sqrt{\frac{1-y^2}{1-x^2}}$	1
25.	Since \vec{a} is a unit vector, $\therefore \vec{a} = 1$	1/2

$(\vec{x} - \vec{a}).(\vec{x} + \vec{a}) = 12.$			
$\Rightarrow \vec{x}.\vec{x} + \vec{x}.\vec{a} - \vec{a}.\vec{x} - \vec{a}.\vec{a} = 12$	1/2		
$\Rightarrow \vec{x} ^2 - \vec{a} ^2 = 12.$ $\Rightarrow \vec{x} ^2 - 1 = 12$	1/2		
$\Rightarrow x ^2 - 1 = 12$ $\Rightarrow \vec{x} ^2 = 13 \Rightarrow \vec{x} = \sqrt{13}$	1/2		
SECTION C			

(Short Answer Questions of 3 Marks each)

		1
26.	$\int \frac{dx}{\sqrt{3 - 2x - x^2}}$	
	$= \int \frac{dx}{\sqrt{-(x^2+2x-3)}} = \int \frac{dx}{\sqrt{4-(x+1)^2}}$	2
	$= \sin^{-1}\left(\frac{x+1}{2}\right) + C \left[\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C\right]$	1
27.	P(not obtaining an odd person in a single round) = P(All three of them throw tails or All three of them throw heads) $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times 2 = \frac{1}{4}$ P(obtaining an odd person in a single round)	1+1/2
	= 1 - P(not obtaining an odd person in a single round) = $\frac{3}{4}$ The required probability	1/2
	= P('In first round there is no odd person' and 'In second round there is no odd person' and 'In third round there is an odd person') = $\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{3}{64}$	1
	4 4 4 04	1
	OR Let X denote the Random Variable defined by the number of defective items.	
	$P(X=0) = \frac{4}{6} \times \frac{3}{5} = \frac{2}{5}$	
	$P(X=1) = 2 \times \left(\frac{2}{6} \times \frac{4}{5}\right) = \frac{8}{15}$	
	$P(X=2) = \frac{2}{6} \times \frac{1}{5} = \frac{1}{15}$	2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1/2
	Mean = $\sum p_i x_i = \frac{10}{15} = \frac{2}{3}$	1/2
28.	Mean = $\sum p_i x_i = \frac{10}{15} = \frac{2}{3}$ Let I = $\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{tanx}} = \int_{\pi/6}^{\pi/3} \frac{\sqrt{cosx}}{\sqrt{sinx} + \sqrt{cosx}} dx$ (i)	

Using
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos(\frac{\pi}{6} + \frac{\pi}{2} - x)}}{\sqrt{\sin(\frac{\pi}{6} + \frac{\pi}{2} - x)}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x + \sqrt{\cos x}}} dx . (ii).$$

$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x + \sqrt{\cos x}}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\sin x + \sqrt{\cos x}}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/2}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/2}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

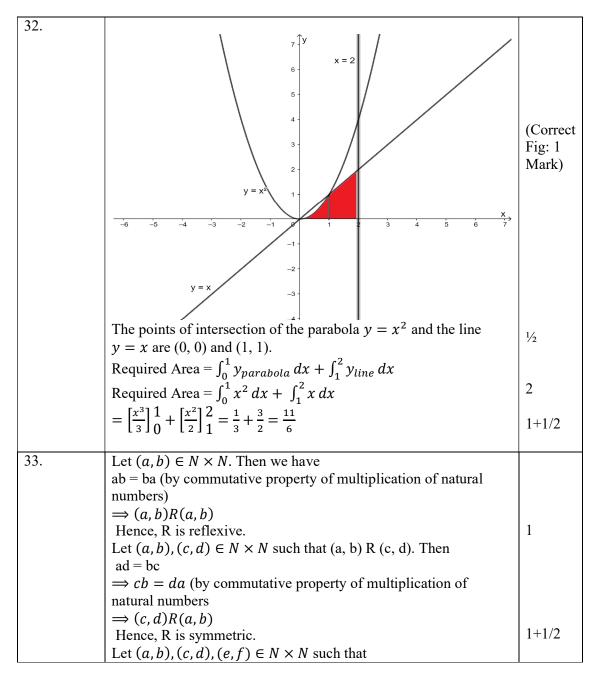
$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{2}} dx$$

$$I = \int_{\pi/3}^{\pi/3} \frac{dx}{1 + \sqrt{2}}$$

	-			
	$v + x \frac{dv}{dx} = \sqrt{1 + v^2} + v^2$	v	1/2	
	dx Separating variables, w			
	dv dx	eget	1/2	
	$\frac{dv}{\sqrt{1+v^2}} = \frac{dx}{x}$		/2	
		$ v + \sqrt{1 + v^2} = \log x + \log K, K > 0$		
	$\log \left y + \sqrt{x^2 + y^2} \right =$	logx ² K		
	$\Rightarrow y + \sqrt{x^2 + y^2} = \pm h$			
	· · ·			
	$\Rightarrow y + \sqrt{x^2 + y^2} = Cx$	² , which is the required general solution	1+1/2	
20	$W_{2} = \frac{7}{400} + 200$	ry only of to		
30.	We have $Z = 400x + 300$	• •		
	$x + y \le 200, x \le 40, x$ The correspondence of the			
	-	e feasible region are $C(20,0)$, $D(40,0)$,		
	B(40,160), A(20,180)			
		↑		
		x = 40		
	×	$+ y = 200 x = A^{2} (20, 180)$		
		B = (40, 160)		
		B = (40, 100)		
		100		
		C = (20, 0) D = (40, 0) x		
	-200 -1	0 0 100 200		
		-100	1	
		-100		
			_	
	Corner Point	$\mathbf{Z} = 400\mathbf{x} + 300\mathbf{y}$		
	C(20,0)	8000	4	
	D(40,0)	16000		
	B(40,160)	64000		
	A(20,180)	62000] 1	
	Maximum profit occur	•	1	
21	and the maximum prof $(r^3 + r + 1)$		-	
31.	$\int \frac{(x^3+x+1)}{(x^2-1)} dx = \int \left(x + \frac{1}{x^2}\right) dx$	$\frac{2x+1}{(x-1)(x+1)}dx$	1	
	now resolving $\frac{1}{(x-1)(x+1)}$	$\frac{1}{1}$ into partial fractions as		
		D		
	$\frac{2x+1}{(x-1)(x+1)} = \frac{A}{x-1}$	<u> </u>		
	$(x-1)(x+1)^{-}x-$	1 + x + 1		
	We get $\frac{2x+1}{(x-1)(x+1)} = \frac{3}{2(x-1)} + \frac{1}{2(x+1)}$			
	(x-1)(x+1)	2(x-1) = 2(x+1)	1	
1	1			

Hence,
$$\int \frac{(x^3 + x + 1)}{(x^2 - 1)} dx = \int \left(x + \frac{2x + 1}{(x - 1)(x + 1)} \right) dx$$
$$= \int \left(x + \frac{3}{2(x - 1)} + \frac{1}{2(x + 1)} \right) dx$$
$$= \frac{x^2}{2} + \frac{3}{2} \log|x - 1| + \frac{1}{2} \log|x + 1| + C$$
$$= \frac{x^2}{2} + \frac{1}{2} (\log|(x - 1)^3(x + 1)| + C)$$

SECTION D (Long answer type questions (LA) of 5 marks each)

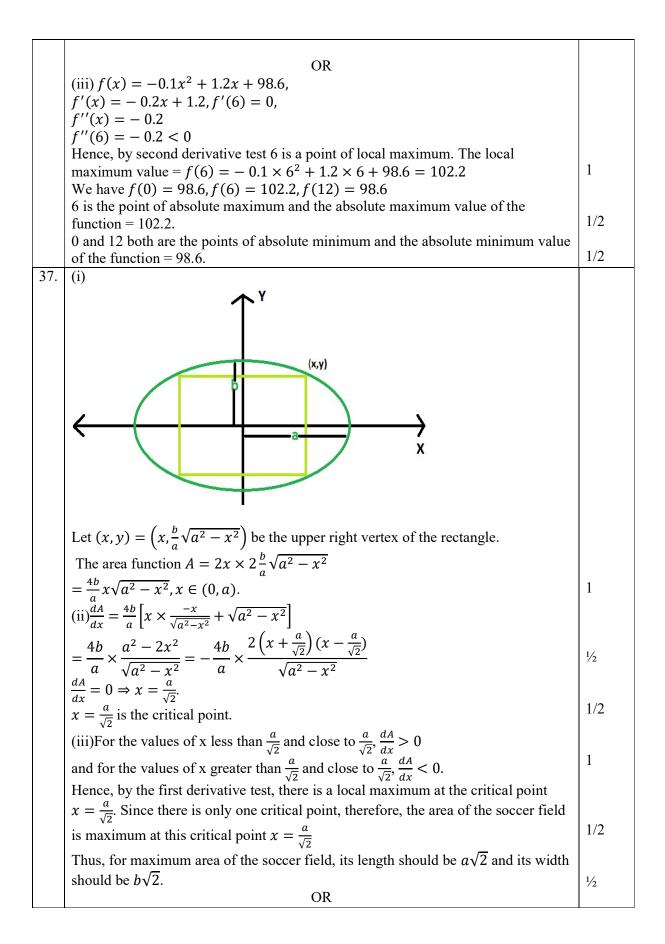


	(a, b) R (c, d) and (c, d) R (e, f).	
	Then $ad = bc$, $cf = de$	
	$\Rightarrow adcf = bcde$	
	$\Rightarrow af = be$	
	$\Rightarrow (a,b)R(e,f)$	
	Hence, R is transitive.	2
		-
	Since, R is reflexive, symmetric and transitive, R is an	17
	equivalence relation on $N \times N$.	1/2
	OR	
	Let $A \in P(X)$. Then $A \subset A$	
	$\Rightarrow (A, A) \in R$	
	Hence, R is reflexive.	1
	Let $A, B, C \in P(X)$ such that	
	$(A, B), (B, C) \in \mathbb{R}$	
	$\Rightarrow A \subset B, B \subset C$	
	$\Rightarrow A \subset C$	
	$\Rightarrow (A,C) \in R$	2
	Hence, R is transitive.	2
	$\emptyset, X \in P(X)$ such that $\emptyset \subset X$. Hence, $(\emptyset, X) \in R$. But, $X \not\subset \emptyset$,	
	which implies that $(X, \emptyset) \notin R$.	
	Thus, R is not symmetric.	2
	,,	
34.	The given lines are non-parallel lines. There is a unique line-	
54.	segment PQ (P lying on one and Q on the other, which is at right	
	angles to both the lines. PQ is the shortest distance between the	
	lines. Hence, the shortest possible distance between the insects =	
	PQ	
	The position vector of P lying on the line	
	$\vec{r} = 6\hat{\imath} + 2\hat{\jmath} + 2\hat{k} + \lambda(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$	
	is $(6 + \lambda)\hat{i} + (2 - 2\lambda)\hat{j} + (2 + 2\lambda)\hat{k}$ for some λ	1/2
	The position vector of Q lying on the line	
	$\vec{r} = -4\hat{\imath} - \hat{k} + \mu(3\hat{\imath} - 2\hat{\jmath} - 2\hat{k})$	1/2
	is $(-4 + 3\mu)\hat{i} + (-2\mu)\hat{j} + (-1 - 2\mu)\hat{k}$ for some μ	· -
	$\overrightarrow{PQ} = (-10 + 3\mu - \lambda)\hat{\imath} + (-2\mu - 2 + 2\lambda)\hat{\jmath} + (-3 - 2\mu - 2\lambda)\hat{k}$	1/2
	Since, PQ is perpendicular to both the lines	/2
	$(-10 + 3\mu - \lambda) + (-2\mu - 2 + 2\lambda)(-2) + (-3 - 2\mu - 2\lambda)2$	
		1/
	$= 0, \qquad (i)$	1/2
	$i.e., \mu - 3\lambda = 4$ (i)	
	and $(-10 + 3\mu - \lambda)3 + (-2\mu - 2 + 2\lambda)(-2) + (-3 - 2\mu - 2\mu)(-2)$	
	$2\lambda)(-2) = 0,$	1/2
	$i. e., 17\mu - 3\lambda = 20$ (ii)	
	solving (i) and (ii) for λ and μ , we get $\mu = 1, \lambda = -1$.	1
	The position vector of the points, at which they should be so that	-
	the distance between them is the shortest, are	
	$5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$	1/2
		1/2
	$\overrightarrow{PQ} = -6\hat{\imath} - 6\hat{\jmath} - 3\hat{k}$	1
	The shortest distance = $ \overrightarrow{PQ} = \sqrt{6^2 + 6^2 + 3^2} = 9$	1
	OR	

	Eliminating t between the equations, we obtain the equation of the	
	path $\frac{x}{2} = \frac{y}{-4} = \frac{z}{4}$, which are the equations of the line passing	
	through the origin having direction ratios <2, -4, 4>. This line is the path of the rocket.	1
	When $t = 10$ seconds, the rocket will be at the point (20, -40, 40). Hence, the required distance from the origin at 10 seconds =	1/2
	$\sqrt{20^2 + 40^2 + 40^2} km = 20 \times 3 km = 60 km$ The distance of the point (20, -40, 40) from the given line	1
	$=\frac{ (\vec{a_2}-\vec{a_1})\times\vec{b} }{ \vec{b} } = \frac{ -30\hat{j}\times(10\hat{i}-20\hat{j}+10\hat{k}) }{ 10\hat{i}-20\hat{j}+10\hat{k} } \ km = \frac{ -300\hat{i}+300\hat{k} }{ 10\hat{i}-20\hat{j}+10\hat{k} } \ km$	2
	$=\frac{300\sqrt{2}}{10\sqrt{6}} km = 10\sqrt{3} km$	1/2
35.	$=\frac{300\sqrt{2}}{10\sqrt{6}} km = 10\sqrt{3} km$ $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$ $ A = 2(0) + 3(-2) + 5(1) = -1$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix}, A^{-1} = \frac{1}{(-1)} \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix}$ $X = A^{-1}B \Longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{(-1)} \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$ $= \frac{1}{(-1)} \begin{bmatrix} 0 + 5 - 6 \\ 22 + 45 - 69 \\ 11 + 25 - 39 \end{bmatrix}$ $\Longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{(-1)} \begin{bmatrix} -1 \\ -2 \\ -2 \end{bmatrix} \Longrightarrow x = 1, y = 2, z = 3.$	¹ / ₂ 3 1+1/2
1		

SECTION E(Case Studies/Passage based questions of 4 Marks each)

36.	(i) $f(x) = -0.1x^2 + mx + 9$	8.6, being a	polynomial function, is different	ntiable	
	everywhere, hence, differentia	able in (0, 12	2)	1	
	(ii)f'(x) = -0.2x + m				
	Since, 6 is the critical point,				
	$f'(6) = 0 \Longrightarrow m = 1.2$			1	
	(iii) $f(x) = -0.1x^2 + 1.2x + 1.2x$	- 98.6			
	f'(x) = -0.2x + 1.2 = -0.2(x - 6)				
	In the Interval	f'(x)	Conclusion		
	(0, 6)	+ve	f is strictly increasing		
			: [0, <i>C</i>]		
			in [0, 6]		
	(6, 12)	-ve	f is strictly decreasing	1+1	



	<u> </u>	1
	(iii) $A = 2x \times 2\frac{b}{a}\sqrt{a^2 - x^2}, x \in (0, a).$	
	Squaring both sides, we get	
	$Z = A^{2} = \frac{16b^{2}}{a^{2}}x^{2}(a^{2} - x^{2}) = \frac{16b^{2}}{a^{2}}(x^{2}a^{2} - x^{4}), x \in (0, a).$	
	A is maximum when Z is maximum.	
	$\frac{dZ}{dx} = \frac{16b^2}{a^2} (2xa^2 - 4x^3) = \frac{32b^2}{a^2} x (a + \sqrt{2}x)(a - \sqrt{2}x)$	
	$\frac{dZ}{dx} = 0 \Rightarrow x = \frac{a}{\sqrt{2}}.$	
	$\frac{d^2 Z}{dx^2} = \frac{32b^2}{a^2}(a^2 - 6x^2)$	
	$\left(\frac{d^2 Z}{dx^2}\right)_{x=\frac{a}{\sqrt{2}}} = \frac{32b^2}{a^2}(a^2 - 3a^2) = -64b^2 < 0$	1
	Hence, by the second derivative test, there is a local maximum value of Z at the	1
	critical point $x = \frac{a}{\sqrt{2}}$. Since there is only one critical point, therefore, Z is	
	maximum at $x = \frac{\sqrt{a}}{\sqrt{2}}$, hence, A is maximum at $x = \frac{a}{\sqrt{2}}$.	1/2
	Thus, for maximum area of the soccer field, its length should be $a\sqrt{2}$ and its width should be $b\sqrt{2}$.	1/2
38.	(i)Let P be the event that the shell fired from A hits the plane and Q be the event	
	that the shell fired from B hits the plane. The following four hypotheses are	
	possible before the trial, with the guns operating independently:	
	$E_1 = PQ, E_2 = \overline{PQ}, E_3 = \overline{PQ}, E_4 = P\overline{Q}$ Let E = The shell fired from exactly one of them hits the plane.	
	$P(E_1) = 0.3 \times 0.2 = 0.06, P(E_2) = 0.7 \times 0.8 = 0.56, P(E_3) = 0.7 \times 0.2$	
	$= 0.14, P(E_4) = 0.3 \times 0.8 = 0.24$	
	$P\left(\frac{E}{E_1}\right) = 0, P\left(\frac{E}{E_2}\right) = 0, P\left(\frac{E}{E_3}\right) = 1, P\left(\frac{E}{E_4}\right) = 1$	1
	$P(E) = P(E_1) \cdot P\left(\frac{E}{E_1}\right) + P(E_2) \cdot P\left(\frac{E}{E_2}\right) + P(E_3) \cdot P\left(\frac{E}{E_3}\right) + P(E_4) \cdot P\left(\frac{E}{E_4}\right)$	1
	= 0.14 + 0.24 = 0.38	1
	$(ii) By Bayes' Theorem, P\left(\frac{E_3}{E}\right) = \frac{P(E_3).P\left(\frac{E}{E_3}\right)}{P(E_1).P\left(\frac{E}{E_1}\right) + P(E_2).P\left(\frac{E}{E_2}\right) + P(E_3).P\left(\frac{E}{E_3}\right) + P(E_4).P\left(\frac{E}{E_4}\right)}$	
	$ (E) \qquad P(E_1).P(\frac{z}{E_1}) + P(E_2).P(\frac{z}{E_2}) + P(E_3).P(\frac{z}{E_3}) + P(E_4).P(\frac{z}{E_4}) $	
	0.14 7	2
	$=\frac{0.14}{0.38}=\frac{7}{19}$	_
	NOTE: The four hypotheses form the partition of the sample areas and it can be	
	NOTE: The four hypotheses form the partition of the sample space and it can be seen that the sum of their probabilities is 1. The hypotheses E_1 and E_2 are actually	
	eliminated as $P\left(\frac{E}{E_1}\right) = P\left(\frac{E}{E_2}\right) = 0$	
	Alternative way of writing the solution:	
	(i)P(Shell fired from exactly one of them hits the plane)	
	= P[(Shell from A hits the plane and Shell from B does not hit the plane) or (Shell)	1
	from A does not hit the plane and Shell from B hits the plane)]	I
	$= 0.3 \times 0.8 + 0.7 \times 0.2 = 0.38$ (ii)P(Shall fired from R bit the plane/Exactly one of them bit the plane)	1
	(ii)P(Shell fired from B hit the plane/Exactly one of them hit the plane)P(Shell fired from B hit the plane ∩ Exactly one of them hit the plane)	
	$= \frac{P(\text{Exactly one of them hit the plane})}{P(\text{Exactly one of them hit the plane})}$	
	- (

P(Shell from only B hit the plane)	1
P(Exactly one of them hit the plane)	
0.147	1
$=\frac{1}{0.38}=\frac{1}{19}$	1