TEST

JEE Mains PYQS Electricty current (Physics Master Academy)

QUESTIONS

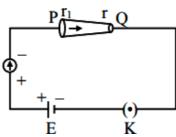
SECTIONS

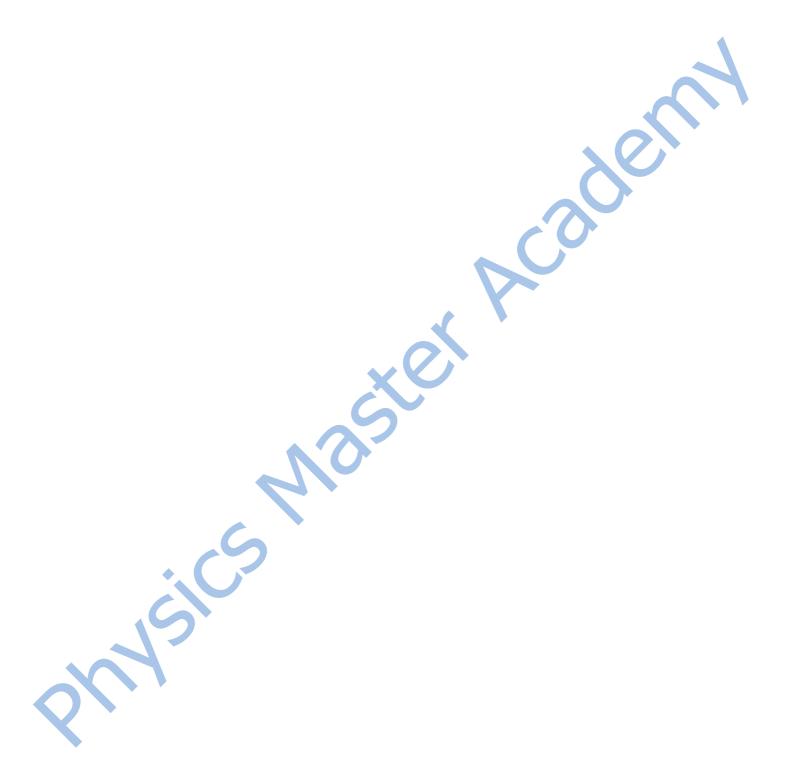
1. Section A - 30 Questions

Section 1: Section A - 30 Questions

SECTION INSTRUCTIONS

This section contains 30 MCQs. +4 mark for every correct answer, -1 for every incorrect answer

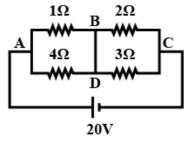

1 The colour coding on a carbon resistor is shown in the given kgure. The resistance value of the given resistor is



- \bigcirc (5700 \pm 285) Ω
- $(7500 \pm 750)\Omega$
- \bigcirc (5700 ± 375) Ω
- $(7500 + 375)\Omega$

Correct: +4 · Incorrect: -1

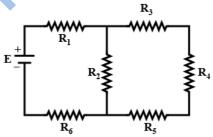
2 In the given kgure, a battery of emf E is connected across a conductor PQ of length 'l' and different area of cross sections having radii r_1 and r_2 ($r_2 < r_1$)


0	Drift velocity of electron increases
0	Electric keld decreases
\circ	Electron current decreases
0	All of these
	Correct: +4 · Incorrect: -1
ach (current of 10A exists in a wire if cross sectional area of 5 mm ² with a drift velocity of 2×10^{-3} ms ⁻¹ . The number of free electrons in cubic meter of the wire is
0	2×10 ²⁵
0	2×10 ²³
0	625×10 ²⁵
0	2×10 ⁶
	Correct: +4 · Incorrect: -1
∯ A bowi	current through a wire depends on time as $i = \alpha_0 t + \beta t^2$ where $a_0 = 20$ A/s and $\beta = 8$ As ⁻² . Find the charge crossed through a section of
† A :he wi	current through a wire depends on time as $i = \alpha_0 t + \beta t^2$ where $a_0 = 20$ A/s and $\beta = 8$ As ⁻² . Find the charge crossed through a section of re in 15s.
the wi	current through a wire depends on time as $i = \alpha_0 t + \beta t^2$ where $a_0 = 20 A/s$ and $\beta = 8 A s^{-2}$. Find the charge crossed through a section of re in 15s. 2250C
# A	re in 15s.
# A	2250C
H A	2250C 11250C
che wi	2250C 11250C 2100C 260C Correct: +4 · Incorrect: -1
che wi	2250C 11250C 2100C 260C
he wi	2250C 11250C 2100C 260C Correct: +4 · Incorrect: -1
he wi	re in 15s. $2250C$ $11250C$ $2100C$ $260C$ $Correct: +4 \cdot Incorrect: -1$ wire of 1Ω has a length 1m. It is stretched till its length increases by 25%. The percentage change in resistance to the nearest integer
he wi	re in 15s. 2250C 11250C 2100C 260C Correct: $+4 \cdot \text{Incorrect: } -1$ wire of 1Ω has a length 1m. It is stretched till its length increases by 25%. The percentage change in resistance to the nearest integer 76%

6	A circui	to verify Ohm's law uses ammeter and voltmeter in series or parallel connected correctly to the resistor. I	n the circuit:
C) amm	ter is always used in parallel and voltmeter in series	
C) both	mmeter and voltmeter must be connected in parallel	
C) amm	ter is always connected in series and voltmeter in parallel	
C) both	mmeter and voltmeter must be connected in series	
resis	tance o	ual length of an iron wire and a copper-nickel alloy wire, each of 2mm diameter connected parallel t give a 3Ω ?	ect: +4 · Incorrect: -1 n equivalent
(Give	en resis	vities of iron and copper nickel alloy wire are 12 $\mu\Omega$ and 51 $\mu\Omega$ respectively)	
C) 82m		
C) 97m		
C) 110r		
C) 90m		
		Corr	ect: +4 · Incorrect: -1
8 Ω.	If you a	e provided a set of resistances 2Ω , 4Ω , 6Ω and 8Ω . Connect these resistances so as to obtain an equivalen	t resistance of 46/3
C) 4Ωa	d 6Ω are in parallel with 2Ω and 8Ω in series.	
C) 6 Ω a	d 8Ω are in parallel with 2Ω and 4Ω in series.	
C) 2Ωa	d 6Ω are in parallel with 6Ω and 8Ω in series.	
C	2Ωa	d 4Ω are in parallel with 6Ω and 8Ω in series.	
	7	Corr	ect: +4 · Incorrect: -1
9	Five eq	al resistances are connected in a network as shown in kgure. The net resistance between the points A and	B is

- O R/2
- 3R/2
- \bigcirc R
- 2R

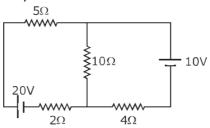
Correct: +4 · Incorrect: -1


10 In the given circuit diagram, a sire is joining points B and D. The current in this wire is

- O.4A
- 2A
- 4A
- zero

Correct: +4 · Incorrect: -1

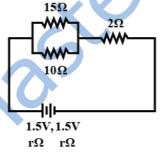
11 In the kgure shown, what is the current (in Ampere) drawn from the battery? You are given: $R_1 = 15\Omega$, $R_2 = 10\Omega$, $R_3 = 20\Omega$, $R_4 = 5\Omega$, $R_5 = 25\Omega$, $R_6 = 30\Omega$, $R_6 = 30\Omega$, $R_7 = 15$ V.



- 0 13/24
- O 7/18
- 0 9/32
- O 20/3

Correct: +4 · Incorrect: -1

12 ideal	In volt	the given circuit the meter across R_4 is 5	e internal resistan 5V, then the value	ce of te18V cell of R ₂ will be	is negligible. I ${ m R_3}$	If $R_1 = 400\Omega$, R_3 R_4	= 100Ω and R_4 = 5	500Ω and the reac	ling of an
				D					
				r M		R ₂			
				L	18V				
C	3	00W						~	11
С) 4	50W							
С	5	50W						>	
C	2	30W				^	Co	Cowards 14	· Incorrect: -1
13	In	the given circuit all	resistances are o	f the value R oh	nm each. The e	equivalent resista	nce between A and		incorrect1
					4	THE S			
				A•—ww	THIE STATE	******	*		
				B•—,***			•		
C	_			4.					
		R/2 R/3	(5)						
C		C							
		3						Correct: +4	· Incorrect: -1
14 what	Fiv val	e identical cells of in ue of `R', current in	nternal resistance series and parall	e 1W and emf 5 el combinatior	5V are connect n will remain th	ed in series and i ne same?	n parallel with an e	external resistanc	e `R′. For
С) 1	Ω							
C	2	5 Ω							
С	5	Ω							


15 In the kgure shown the current in the 10V battery is close to

- 0.71A from positive to negative terminal
- 0.42A from positive to negative terminal
- 0.21A from positive to negative terminal
- 0.36A from negative to positive terminal

Correct: +4 · Incorrect: -1

16 In the given circuit, an ideal voltmeter connected across the 10Ω resistance reads 2V. The internal resistance r of each cell is

- \bigcirc 1 Ω
- \bigcirc 0.5 Ω
- \bigcirc 1.5 Ω
- O Ω

Correct: +4 · Incorrect: -1

17 A cell of internal resistance r drives current through an external resistance R. The power delivered by the cell to the eternal resistance will be maximum when

- \cap R = 0.001r
- ∩ R = 1000r

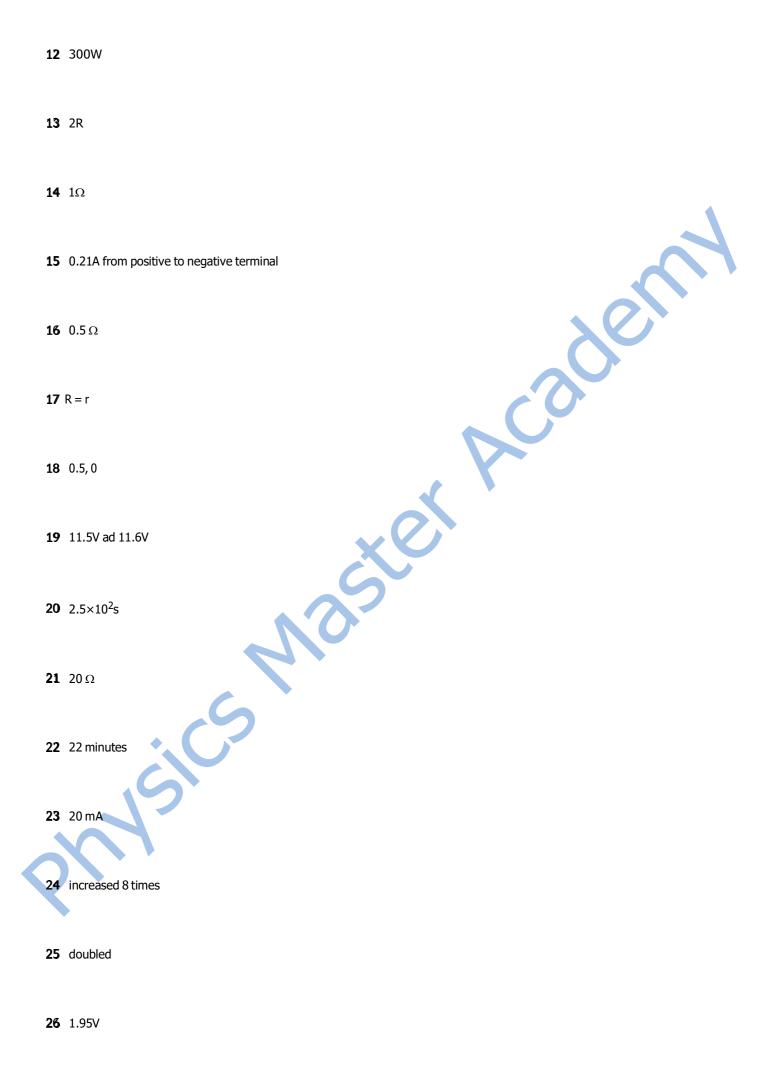
○ R = 2r		
○ R=r		
		Correct: +4 · Incorrect: -1
18 In the given circuit the cells have zero internarespectively are	al resistance. The currents (in Amperes) pa	ssing through resistance R_1 and R_2
respectively are	$R_1 \ge 20\Omega$ $R_2 \ge 20\Omega$ -1 $+1$ $+1$ -1 -1 10 V 10 V	
O 1, 2		
O 2, 2		600
O 0.5, 0		
O, 1		
19 Two batteries with emf 12V and 13V are con	nected in parallel across a lead recistor of	Correct: +4 · Incorrect: -1
batteries are 1Ω and 2Ω respectively. The voltage a	cross the load lies between	10s2. The internal resistances of the two
○ 11.6V ad 11.7V	3	
O 11.5V ad 11.6V		
○ 11.4V ad 11.5V		
O 11.7V ad 11.8V		
16		Correct: +4 · Incorrect: -1
20 An electric appliance supplies 6000 J/min hear increase the internal energy by 2.5×10^3 J?	at to the system. If the system delivers a po	ower of 90W. How long it would take to
2.5×10 ² s		
○ 4.1×10 ¹ s		
○ 2.5×10 ³ s		
○ 2.5×10 ¹ s		

	An electric bulb of 50 watt at 100 volt is used in a circuit having a 200V supply. Calculate the resistance R the bulb so that the power delivered b the bulb is 500W	to be connected in series
0	20 Ω	
0	30 Ω	
0	5Ω	
0	10 Ω	
		Correct: +4 · Incorrect: -1
The rn	One kg of water, at 20°C is heated in an electric kettle whose heating element has a mean (temperature avens voltage in the mains is 200V. Ignoring heat loss from the kettle, time taken for water to evaporate fully is $= 4200J/(kg^{\circ}C)$. Latent heat of water $= 2260kJ/kg$)	
0	16 minutes	
\circ	22 minutes	
0	3 minutes	
0	3 minutes	
		Correct: +4 · Incorrect: -1
	A 2W carbon resistor is color coded wit green, black, red and brown respectively. The maximum current w sistor is	hich can be passed through
0	20 mA	
0	100 mA	
0	0.4 mA	
0	63 mA	
		Correct: +4 · Incorrect: -1
	A constant voltage is applied between two ends of a metallic wire. If the length is halved and the radius of t developed in the wire will be	the wire is doubled, the rate
0	increased 8 times	
0	doubled	

\circ	halved	
\circ	unchanged	
		Correct: +4 · Incorrect: -1
25	A heater coil is cut into two equal parts and only one part is now used in the heater. The heat generated will r	now be
0	four times	
0	doubled	1
0	halved	2),
0	one fourth	
n <i>e</i>	Two resisters 4000 and 9000 are connected in series across a 6V battery. The netertial difference measure	Correct: +4 · Incorrect: -1
26 acros	Two resistors 400Ω and 800Ω are connected in series across a 6V battery. The potential difference measure as 400Ω resistor is close to	a by a voitmeter of 10k12
0	2V	
0	1.8V	
0	2.05V	
0	1.95V	
		Correct: +4 · Incorrect: -1
27 comp	Which of the following will NOT be observed when a multimeter (operating in resistance measuring mode) ponent, are just reversed?	robes connected across a
\circ	Multimeter shows an equal deflection in both cases i.e. before and after reversing the probes if the chosen	component is resistor.
0	Multimeter shows NO deflection in both cases i.e. before and after reversing the probes if the chosen comp	onent is capacitor.
0	Multimeter shows a deflection, accompanied by a splash of light out of connected and NO deflection on rev chosen component is LED.	ersing the probes if the
0	Multimeter shows NO deflection in both cases i.e. before and after reversing the probes if the chosen comp	onent is metal wire.
		Correct: +4 · Incorrect: -1
	An ideal battery of 4V and resistance R re conned in series in the primary circuit of a potentiometer of length value of R to give potential difference of 5mV across 10cm of potentiometer wire is	1m and resistance 5Ω .
\circ	490 Ω	

\bigcirc 480 Ω	
\bigcirc 395 Ω	
\bigcirc 495 Ω	
	Correct: +4 · Incorrect: -1
29 In a potentiometer experiment, it is found that no current passes through the galvanometer when the connected across 52cm of the potentiometer wire. If the cell is shunted by a resistance of 5 Ω , balance is found across 40 cm of the wire. Find the internal resistance of the cell	e terminals of the cell are d when the cell I connected
\bigcirc 1 Ω	
\bigcirc 1.5 Ω	
○ 2Ω	
Ο 2.5 Ω	Correct: +4 · Incorrect: -1
30 On interchanging the resistances, the balance point of a meter bridge shifts to the left by 10cm. The res combination is $1k \Omega$. How much was the resistance on the left slot before interchanging the resistances?	
○ 990 Ω	
Ο 505 Ω	
\bigcirc 550 Ω	
\bigcirc 910 Ω	
	Correct: +4 · Incorrect: -1

JEE Mains PYQS Electrictty/comment((IPhysics Maetter Academy))

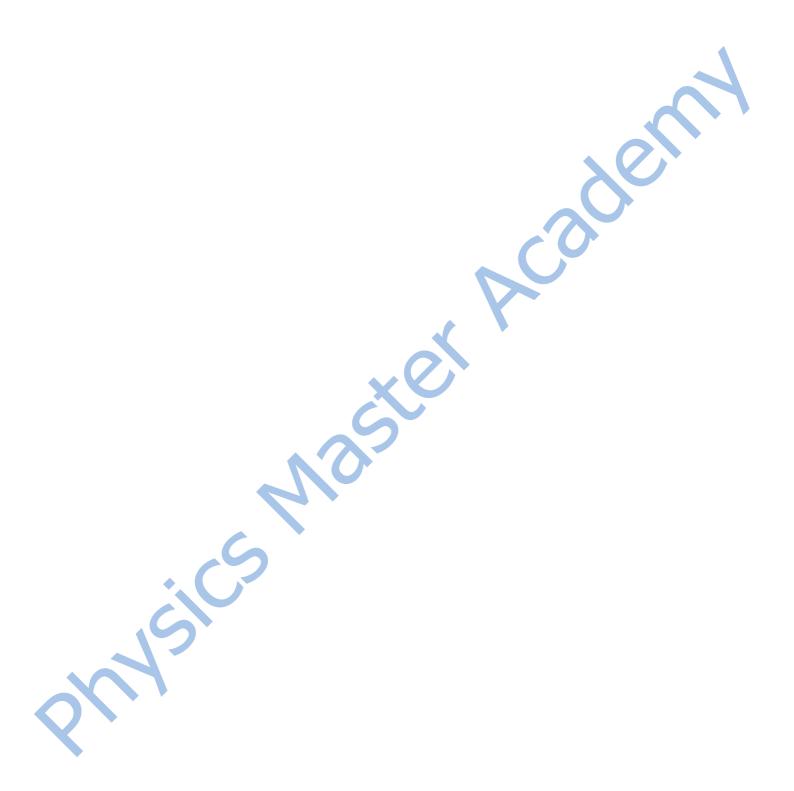

ANSWERS

SECTIONS

1. Section A - 30 Questions

Section 1: Section A - 30 Questions

- **1** $(7500 \pm 375)\Omega$
- 2 Drift velocity of electron increases
- 3 625×10^{25}
- **4** 11250C
- **5** 56%
- 6 ammeter is always connected in series and voltmeter in parallel
- **7** 97m
- **8** 2Ω and 4Ω are in parallel with 6Ω and 8Ω in series.
- **9** F
- **10** 2A
- **11** 9/32


27	Multimeter shows NO deflection in both cases i.e. before and after reversing the probes if the chosen component is capacitor.

28 395 Ω

29 1.5 Ω

30 550 Ω

FOR FULL SOLUTIONS VISIT OUR APP.

