TEST

JEE Mains PYQs Dual nature of radiation and matter (Physics Master Academy)

QUESTIONS	
SECTIONS	
1. Section A - 25 Question	s
Section 1 : Section A - 25 Ques	itions
SECTION INSTRUCTIONS	
This section contains 25 n	1CQs. +4 for every correct answer, -1 for every incorrect answer.

1 The temperature of an ideal gas in 3 dimensions is 300K. The corresponding de-Broglie wavelength of the electron approximately at 300K is [Me = mass of electron = 9×10^{-31} kg; h = Planck's constant = 6.6×10^{-34} Js; kB = Boltzmann constant = 1.38×10^{-23} JK⁻¹]

O 6.26nm	X
○ 8.46nm	S
O 2.26nm	No
○ 3.25nm	
	3

Correct: +4 · Incorrect: -1

2 A particle of mass 4M at rest disintegrates into two particles of mass M and 3M respectively having non zero velocities. The ratio of de-Broglie wavelength of particle of mass M to that of mass 3M will be

Correct: +4 · Incorrect: -1

Given below are two statements: one is labeled as Assertion A and other is labeled a Reason R.
 Assertion A: An electron microscope can achieve better resolving power than an optical microscope.
 Reason R: The de-Broglie's wavelength of the electrons emitted from an electron gun is much less than wavelength of visible light.
 JEE Mains PYQs Dual nature of radiation and matter (Physics Master Academy) · Section A · Page 1 of 18

In the light of the above statements choose the correct answer from the options given below:

JEE Mains PYQs Dual nature of radiation and matter (Physics Master Academy) \cdot Section A \cdot Questions

- A is false but R is true
- Both A and R are true and R is the correct explanation of A \bigcirc
- Both A and R are true and R is not the correct explanation of A \bigcirc
- A is true but R is false

4 An α particle and a proton are accelerated from rest by a potential difference of 200V. After this de Broglie wavelengths are λ_{α} and λ_{P} respectively. The ratio λ_P/λ_α is

Correct: +4 · Incorrect: -1

Correct: +4 · Incorrect: -1

5	An electro	n of mass me and proton of mass $m_p = 1.836$ m_e are moving with the same speed. The ratio of their d	e-Broglie wavelength
$\frac{\lambda_{ele}}{\lambda_p}$ will	roton be		
() 1/1836	No	
(918		
() 1		
() 1836	S	
4			Correct: +4 · Incorrect: -1

An electron, a doubly ionized helium ion (He⁺⁺) and a proton are having the same kinetic energy. The relation between their respective de-Broglie wavelengths

 $\lambda_e, \lambda_{He^{+i} \wedge \lambda_a}$ is

 $\lambda_e > \lambda_{He^{+i} > \lambda_p i}$ $\lambda_e < \lambda_{He^{+i} = \lambda_p i}$

$$\bigcirc \lambda_e > \lambda_p > \lambda_{He^{++i}}$$

 $\bigcirc \lambda_e < \lambda_p i \lambda_{He^{+i}i}$

7

Value of ΔE is

Correct: +4 · Incorrect: -1

E
4E
3E
2E

A particle moving with kinetic energy E has de Broglie wavelength λ . If energy ΔE is added to its energy, the wavelength becomes $\lambda/2$.

Correct: +4 · Incorrect: -1

8 A particle 'P' is formed due to a completely inelastic collision of particles 'x' and 'y' having de-Broglie wavelengths ' γ_s ' and ' γ_y ' respectively. IF x an y were moving in opposite directions, then the de-Broglie wavelength of 'P' is

- $\bigcirc \frac{\gamma_x \gamma_y}{\gamma_x + \gamma_y}$
- $\bigcirc \frac{\gamma_x \gamma_y}{\iota \gamma_x \gamma_y \lor \iota \iota}$

$$\bigcirc \gamma_x - \gamma_y$$

 $\bigcirc \gamma_x + \gamma_y$

Correct: +4 · Incorrect: -1

9 Two particles move at right angle to each other. Their de Broglie wavelengths are λ_1 and λ_2 respectively. The particles suffer perfectly inelastic collision. The de Broglie wavelength λ , of the knal particle is given by

$$\bigcirc \frac{1}{\lambda^2} = \frac{1}{\lambda_1^2} + \frac{1}{\lambda_2^2}$$
$$\bigcirc \lambda = \sqrt{\lambda_1 + \lambda_2}$$

$$\bigcirc \lambda = \frac{\lambda_1 + \lambda_2}{2}$$

$$\bigcirc \frac{2}{\lambda} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$$

Correct: +4 · Incorrect: -1

10 If the de-Broglie wavelength of an electron is equal to 10^{-3} times the wavelength of a photon of frequency 6×10^{14} Hz, then the speed of electron is equal to (Speed of light = 3×10^8 m/s; Planck's constant = 6.63×10^{-34} Js; Mass of electron = 9.1×10^{-31} kg)

- 1.1×10⁶m/s
- 1.7×10⁶m/s
- 1.8×10⁶m/s
- 1.45×10⁶m/s

Correct: +4 · Incorrect: -1

11 The K_a X-ray of molybdenum has wavelength 0.071nm. If the energy of a molybdenum atoms with a K electron knocked out is 27.5 keV, the energy of this atom when an L electron is knocked out will be keV. (Round off to the nearest integer)[$h = 4.14 \times 10^{-15}$ eVs, $e = 3 \times 10^8$ ms⁻¹]

○ 5	
○ 10	
0 15	
○ 20	
Correct: +4 · In	ncorrect: -1
2 The stopping potential in the context of photoelectric effect depends on the following property of incident electromagnetic	radiation:
frequency	
O phase	
Correct: +4 · I	ncorrect: -1

13 Given kgure shows few data points in a photo electric effect experiment for a certain metal. The minimum energy for ejection of electron from its surface is (Planck's constant, $h = 6.62 \times 10^{-14}$ J)

O 2.10eV

Correct: +4 · Incorrect: -1

14 In a photoelectric effect experiment, the graph of stopping potential V versus reciprocal of wavelength obtained is shown in kgure. As the intensity of incident radiation is increased

- Straight line shifts to right
- Slope of the straight line get more steep
- Straight line shifts to left
- Graph does not change

Correct: +4 · Incorrect: -1

15 When the wavelength of radiation falling on a metal is changed from 500nm to 200nm, the maximum kinetic energy of the photoelectrons becomes three time larger. The work function of the metal is close to

O 0.61eV

Correct: +4 · Incorrect: -1

16 Two sources of light emit X rays of wavelength 1nm and visible light of wavelength 500nm. Both the sources emit light of the same power 200W. The ratio of the number density of photons of X rays to the number density of photons of the visible light of the given wavelengths is

- 1/500
 250
 1/250
- 0 500

17 Radiation with wavelength 6561Å falls on a metal surface to produce photoelectrons. The electrons are made to enter a uniform magnetic keld of 3×10^{-4} T. If the radius of the largest circular path followed by the electrons is 10mm, the work function of the metal is close to

- 1.1eV
 0.8eV
 1.6eV
- 1.8eV

Correct: +4 · Incorrect: -1

18 A beam of electromagnetic radiation of intensity 6.4×10^{-5} W/cm² is comprised of wavelength, $\lambda = 310$ nm. It falls normally on a metal (work function $\varphi = 2$ eV) of surface area of 1cm². If one in 10³ photoelectrons ejects an electron, total number of electrons ejected in 1s is 10^{x} . (hc = 1240 eVnm, 1eV = 1.6×10^{-19} J), then x is _____

Correct: +4 · Incorrect: -1

19 The stopping potential V₀ (in volts) as a function of frequency (v) for a sodium emitter, is shown in kgure. The work function of sodium, from the data plotted in the kgure, will be (Given Planck's constant (h) = 6.63×10^{-34} Js, electron charge, $e = 1.6 \times 10^{-19}$ C)

20 In a photoelectric effect experiment the threshold wavelength of light is 380nm. If the wavelength of incident light is 260nm, the maximum kinetic energy of emitted electrons will be : Given E (in eV) =

○ 1.5eV	
○ 3.0eV	
○ 4.5eV	
○ 15.1eV	
	Correct: +4 · Incorrect:

A metal plate of area 1×10^{-4} m² is illuminated by a radiation of intensity 16m W/m². The work function of the metal is 5eV. The energy of the incident photons is 10eV and only 10% of its produces photo electrons. The number of emitted photo electrons per second and their maximum energy, respectively will be $[1eV = 1.6 \times 10^{-19}$ J]

 $\bigcirc~10^{10}$ and 5eV

Correct: +4 · Incorrect: -1

22 Surface of certain metal is krst illuminated with light of wavelength $\lambda_1 = 350$ nm and then, by light of wavelength $\lambda_2 = 540$ nm. It is found that the maximum speed of the photoelectrons in the two cases differ by a factor of (2). The work function of the metal (in eV) is close to (Energy of photon =

-1

23 An electron beam is accelerated by a potential difference V hit a metallic target to produce X rays. It produces continuous as well as characteristic X rays. If λ_{min} is the smallest possible wavelength of X ray in the spectrum, the variation of log λ_{min} with log V is correctly represented in

Correct: +4 · Incorrect: -1

24 Match List I (Fundamental experiment) with List II (its conclusion) and select the correct option from the choices given below the list:

LISC T LISC 11			
A. Franck Hertz experiment		(i) Particle nature of light	
B. Photo electric experiment		(ii) Discrete energy levels of atom	
C. Davision Germer experiment		(iii) Wave nature	ofelectrons
		(iv) Structure of a	itom

- A-ii; B-i; C-iii
- A-iv; B-iii; C-ii
- 🔘 A-i; B-iv; C-iii
- 🔘 A-ii; B-iv; C-iii

Correct: +4 · Incorrect: -1

25 This equation has statement 1 and statement 2. Of the four choices given after the statements, choose the one that describes the two statements.

Statement 1: Davission Germer experiment established the wave nature of electrons. Statement 2: IF electrons have wave nature, they can interfere and show diffraction

- O Statement 1 is false, Statement 2 is true
- Statement 1 is true, Statement 2 is false
- O Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation of Statement 1.
- Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation of Statement 1.

Correct: +4 · Incorrect: -1

TEST

JEE Maims PYQs Dual mature of radiation and matter (Physics Master Academy)

ANSWERS

1. Section A - 25 Questions

Section 1 : Section A - 25 Questions

10 1.45×10⁶m/s

12 frequency

13 2.27eV 14 Graph does not change 15 0.61eV **16** 1/500 17 1.1eV X **18** 11 19 1.66eV 20 1.5eV **21** 10¹¹ and 5eV **22** 1.8 23 $\log_{\lambda} \min$ logV

24 _{A-ii; B-i; C-iii}

FOR FULL SOLUTIONS VISIT OUR APP.

Caleri