TEST

JEE Mains PYQs Electromagnetic Waves (Physics Master Academy)

QUESTIONS	
SECTIONS	
1. Section A - 25 Question	IS
Section 1 : Section A - 25 Que	stions
SECTION INSTRUCTION	
This section contains 25	MCQs. +4 for every correct answer, -1 for every incorrect answer.
1 Electric keld of plane elec The dielectric constant of the	tromagnetic wave propagating through a non magnetic medium is given by $E = 20 \cos (2 \times 10^{10} t - 200 x (V/m. medium is equal to (Take mr = 1))$
O 9	
○ 2	NO
O 1/3	
○ 3 ◆	69
	Correct: +4 · Incorrect: -1
2 The magnetic keld vector	of an electromagnetic wave is given by B = $B_0 \frac{i+j}{\sqrt{2}} \cos(kz - \omega t)$ where
i Ĵ	and y axis respectively. At t = 0, two electric charges q_1 of 4π coulomb and q_2 of 2π coulomb located at (0, 0,
	and y axis respectively. At $t = 0$, two electric charges q_1 or th could his and q_2 or $2h$ could his foculted at $(0, 0)$, ely, have the same velocity 0.2 c
, (where c is the velocity of ligh	nt). The ratio of the fore acting on charge q_1 to q_2 is
$\bigcirc 2\sqrt{2} \cdot 1$	

- 2√2:1
- $\bigcirc 1:\sqrt{2}$

O 2:1

9es

 $\bigcirc \sqrt{2}:1$

³ Electric keld in a plane electromagnetic wave is given by $E = 5 \sin (500x - 10 \times 10^{10} t) V/m$. The velocity of electromagnetic wave in this medium is (Given C = speed of light in vacuum)

- 3/2 C
- C
- O 2/3 C
- O C/2

Correct: +4 · Incorrect: -1

4 A plane electromagnetic wave with frequency of 30 MHz travels in free space. At particular point in space and time, electric keld is V/m. The magnetic keld at this point will be $x \times 10^{-8}$ T. The value of x is ____

1 2 3 4 Correct: +4 · Incorrect: -1 5 The relative permittivity of distilled water is 81. The velocity of light in it will be (Given $\mu_{s} = 1$) 4.33×10⁷m/s 2.33×10⁷m/s 5.33×10⁷m/s 6 A plane electromagnetic wave of frequency 100 MHz is travelling in vacuum along the x direction. At a particular point in space and time, $\beta = 2.0 \times 10^{-8}$

```
\hat{k}
T. (where
\hat{k}
is unit vector along z direction). What is
\vec{E}
```

- 6.0 j V/m
- 0.6 j V/m
- \bigcirc 0.6 \hat{k} V/m
- \bigcirc 6.0 \hat{k} V/m

Correct: +4 · Incorrect: -1

7 For an electromagnetic wave travelling in free space, the relation between average energy densities due to electric (U_e) and magnetic (U_m) kelds is

- \bigcirc U_e > U_m
- \bigcirc U_e = U_m
- $\bigcirc U_e \neq U_m$
- \bigcirc U_e < U_m

Correct: +4 · Incorrect: -1

8 An electromagnetic wave of frequency 5 GHz, is travelling in a medium whose relative electric permittivity and relative magnetic permeability both are 2. Its velocity in this medium is $\times 10^7$ m/s.

Correct: +4 · Incorrect: -1

- **9** A radiation is emitted by 1000W bulb and is generates an electric keld and magnetic keld at P, placed at a distance of 2m. The efficiency of the bulb is 1.25%, The value of peak electric keld is $x \times 10^{-1}$ V/m. Value of x is ____(Rounded off to nearest integers) [Take $\varepsilon_0 = 8.85 \times 10^{-12}$ C²N⁻¹m⁻², c = 3×10⁸ms⁻¹]
 -) 132
 -) 135

0 134

) 137

Correct: +4 · Incorrect: -1

10 An electron is constrained to move along the y axis with a speed of 0.1c(c is the speed of light) in the presence of electromagnetic wave, whose electric keld is $\vec{E} = 30$

j

sin $(1.5 \times 10^7 t - 5 \times 10^{-2} x)V/m$. The maximum magnetic force experienced by the electron will be (given $c = 3 \times 10^8 ms^{-1}$ and electron charge = $1.6 \times 10^{-19}C$)

- \bigcirc 3.2 × 10⁻¹⁸N
- \bigcirc 2.4× 10⁻¹⁸N
- \bigcirc 4.8× 10⁻¹⁹N
- \bigcirc 1.6× 10⁻¹⁹N

Correct: +4 · Incorrect: -1

11 A plane electromagnetic wave, has frequency of 2.0×10^{10} Hz and its energy density is 1.02×10^{-8} J/m³ in vacuum. The amplitude of the magnetic keld of the wave is close to

$$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^0 \frac{Nm^2}{C^2} \wedge speed \text{ of } light 3 \times 10^8 ms^{-1}$$

150nT

- 160 nT
- 🔾 180 nT
- 190 nT

Correct: +4 · Incorrect: -1

12 In a plane electromagnetic wave, the direction of electric keld and magnetic keld are represented by \hat{k} and 2

, respectively. What is the unit vector along direction of propagation of the wave.

$$\bigcirc \frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$$

$$\bigcirc \frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$$

$$\bigcirc \frac{1}{\sqrt{5}}(\hat{i}+\hat{2j})$$

$$\bigcirc \frac{1}{\sqrt{5}}(2\hat{i}+\hat{j})$$

13

ĥ

A lane electromagnetic wave is propagating along the $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$ direction with its polarization along the direction

. The correct form of the magnetic keld of the wave would be (here B_0 is an appropriate constant).

$$B_0 \frac{\hat{i} - \hat{j}}{\sqrt{2}} \cos\left(\omega t - k \frac{\hat{i} + \hat{j}}{\sqrt{2}}\right)$$

$$B_0 \frac{\hat{j} - \hat{i}}{\sqrt{2}} \cos\left(\omega t - k \frac{\hat{i} + \hat{j}}{\sqrt{2}}\right)$$

$$B_0 \hat{k} \cos\left(\omega t - k \frac{\hat{i} + \hat{j}}{\sqrt{2}}\right)$$

$$\bigcirc B_0 \frac{\hat{l} + \hat{j}}{\sqrt{2}} \cos\left(\omega t - k \frac{\hat{l} + \hat{j}}{\sqrt{2}}\right)$$

Correct: +4 · Incorrect: -1

Correct: +4 · Incorrect: -1

14 A plane electromagnetic wave of frequency 25GHz is propagating in vacuum along the z direction. At a particular point is space and time, the magnetic keld is given by $\vec{B} = 5 \times 10^{-8}$

 \hat{j} T. The corresponding electric keld \vec{E} is (speed of light, c = 3 × 10⁸ ms⁻¹)

○ 1.66 × 10⁻⁶ i V/m

─ -1.66×10⁻⁶ V/m

- 🔿 -15 V/m
- 15 V/m

15 IF the magnetic keld in a plane electromagnetic wave is given by $\vec{B} = 3 \times 10^{-8} \sin (1.6 \times 10^3 x + 48 \times 10^{10} t)$

 \dot{I} , then what will be expression for electric keld?

$$\bigcirc \vec{E} = (60 \sin (1.6 \times 10^3 \text{x} + 48 \times 10^{10} \text{t}) \hat{k} \text{ V/m})$$

 \vec{E} = (9 sin (1.6×10³x + 48×10¹⁰t) \hat{k} V/m)

- $\bigcirc \vec{E} = (3 \times 10^8 \sin (1.6 \times 10^3 \text{x} + 48 \times 10^{10} \text{t}) \hat{k} \text{ V/m})$
- $\bigcirc \vec{E} = (3 \times 10^8 \sin (1.6 \times 10^3 \text{x} 48 \times 10^{10} \text{t}) \hat{k} \text{V/m})$

Correct: +4 · Incorrect: -1

16 A plane electromagnetic wave of frequency 50 MHz travels in free space along the positive direction. At a particular point in space and time, $\vec{E} = 6.3$

```
\hat{j} V/m. The corresponding magnetic keld \vec{B} at point is
```

```
\bigcirc 18.9 ×10<sup>-8</sup> \hat{k} T
```

```
\bigcirc 2.1 ×10<sup>-8</sup> \hat{k} T
```

```
\bigcirc 6.3 × 10<sup>-8</sup> \hat{k} T
```

```
\bigcirc 18.9 × 10<sup>8</sup> \hat{k} T
```

Correct: +4 · Incorrect: -1

```
50 W/m<sup>2</sup> energy density of sunlight is normally incident on the surface of a solar panel. Some part of incident energy (25%) is reflected from the surface and the rest is absorbed. The force exerted on 1m^2 surface area will be close to (e = 3 \times 10^8m/s)
```


 \bigcirc 35×10⁻⁸N

Correct: +4 · Incorrect: -1

19 The mean intensity of radiation on the surface of the Sun is about 10^8 W/m². The rms value of the corresponding magnetic keld is closest to

- 10²T
- 10⁻²T
- 10⁻⁴T

Correct: +4 · Incorrect: -1

19 If the given keld of a plane electromagnetic wave is given by (The speed of light = 3×10^8 m/s) B = 100×10^{-6} sin $\left[2\pi \times 2 \times 10^{15} \left(t - \frac{x}{c}\right)\right]$

then the maximum electric keld associated with it is

- \bigcirc 6 × 10⁴ N/C
- \bigcirc 3× 10⁴ N/C
- \bigcirc 4× 10⁴ N/C
- \bigcirc 4.5× 10⁴ N/C

Correct: +4 · Incorrect: -1

20 Magnetic keld in a plane electromagnetic wave is given by $\vec{B} = B_0 \sin(kx + wt)$

T. Expression for corresponding electric keld will be: where c is speed of light.

$$\bigcirc \vec{E} = B_0 c \sin(kx + \omega t) \hat{k} V/n$$

 $\vec{E} = B_0/c \sin(kx + \omega t)\hat{k} V/m$

 $\vec{E} = -B_0 c \sin (kx + \omega t) \hat{k} V/m$ $= B_0 c \sin (kx - \omega t) V/m$ $\vec{E} \qquad \hat{k}$

Correct: +4 · Incorrect: -1

21 Choose the correct option relating wavelengths of different parts of electromagnetic wave spectrum:

 \bigcirc visible < $\lambda_{\text{microwaves}}$ < $\lambda_{\text{radio waves}}$ < $\lambda_{\text{X-rays}}$

 \bigcirc radio waves > $\lambda_{\text{microwaves}}$ > λ_{visible} > $\lambda_{\text{X-rays}}$

 \bigcirc X-rays $<\lambda_{\text{microwaves}} < \lambda_{\text{radio waves}} < \lambda_{\text{visible}}$

 \bigcirc visible > λ_{X-rays} > $\lambda_{radio waves}$ > $\lambda_{microwaves}$

Correct: +4 · Incorrect: -1

22 Arrange the following electromagnetic radiations per quantum in the order of increasing energy: A: Blue light, B: Yellow light, C: X rays, D: Radiowave

- 🔘 C, A, B, D
- O B, A, D, C
- O D, B, A, C
- 🔘 A, B, D, C
- 23 Microwave oven acts on the principle of
 - giving rotational energy to water molecules
 - giving translational energy to water molecules
 - giving vibrational energy to water molecules
 - transferring electrons from lower to higher energy levels in water molecules

Correct: +4 · Incorrect: -1

Correct: +4 · Incorrect: -1

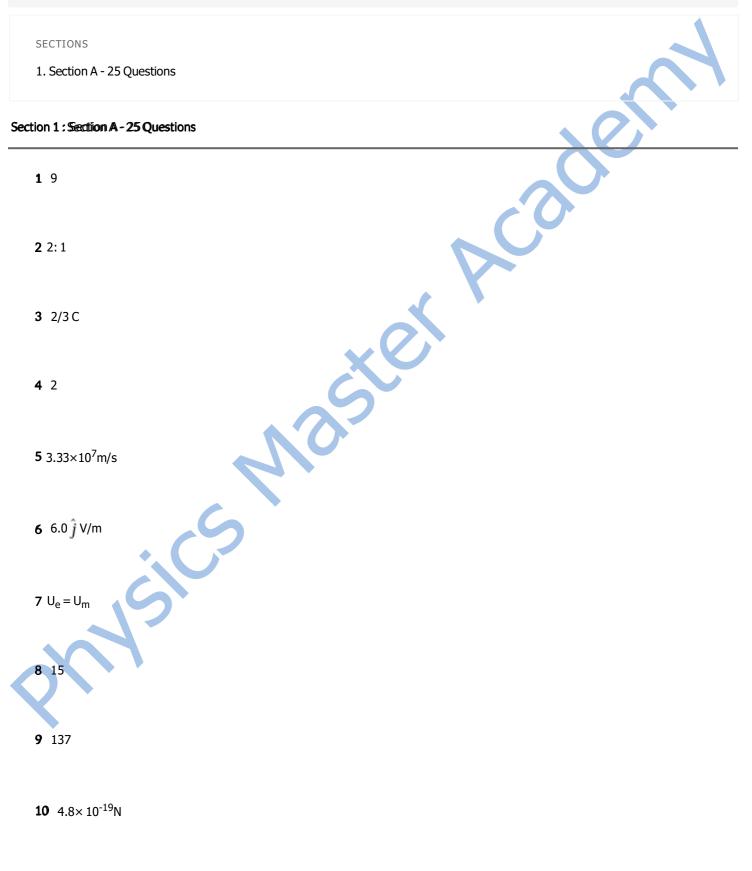
24 In microwaves, X rays, infrared, gamma rays, ultra-violet, radio waves and visible parts of the electromagnetic spectrum are denoted by M, X, I, G, U, R and V then which of the following is the arrangement in ascending order of wavelength?

O I, M, R, U, V, X and G

Correct: +4 · Incorrect: -1

25 The frequency of X rays, γ -rays and ultra violet rays are respectively a, b and c then

- a < b; b > c
- a > b; b > c
- a < b < c
- a = b = c


JEE Mains PYQs Electromagnetic Waves (Physics Master Academy) \cdot Section A \cdot Questions

Correct: +4 · Incorrect: -1

TEST

JEE Mains PYQs Electromagnetic Waves (Physics Master Academy)

ANSWERS

11 160 nT

12
$$\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$$

13
$$B_0 \frac{\hat{l} - \hat{j}}{\sqrt{2}} \cos\left(\omega t - k \frac{\hat{l} + \hat{j}}{\sqrt{2}}\right)$$

14 15 i V/m

15 $\vec{E} = (9 \sin (1.6 \times 10^3 \text{x} + 48 \times 10^{10} \text{t}) \hat{k} \text{ V/m})$

16 2.1 ×10⁻⁸ \hat{k} T

17 20×10⁻⁸N

18 10⁻⁴T

19 3×10⁴ N/C

- **20** $\vec{E} = B_0 c \sin(kx + \omega t) \hat{k} V/m$
- **21** radio waves > $\lambda_{\text{microwaves}} > \lambda_{\text{visible}} > \lambda_{X-rays}$

22 D, B, A, C

23 giving vibrational energy to water molecules

24 G, X, U, V, I, M and R

25 a < b; b > c 160 hT > c

x ouer

FOR FULL SOLUTIONS VISIT OUR APP.

zer

Caller

11 160 nT