
TEST JEE MAins DVOs Thormodynamics (Dhysics Master Academy)	
JEE MAins PYQs Thermodynamics (Physics Master Academy)	
QUESTIONS	
SECTIONS	
1. Section A - 25 Questions	
Section 1 : Section A - 25 Questions	10)
SECTION INSTRUCTIONS	
This section contains 25 MCQs. +4 for every correct answer, -1 for very incorrect answer.	
1 In thermodynamics, heat and work are	
O Point functions	
Extensive thermodynamics state variables	
o path functions	
Intensive thermodynamics state variables	
	Correct: +4 · Incorrect: -1
2 200g of water is heated from 40°C to 60°C. Ignoring the slight expansion of water, the change in its specikc heat fo water = 4184 J/kgK)	s internal energy is close to (Given
○ 167.4 kJ	
U 107.4 KJ	
○ 8.4kJ	
4.2kJ	
○ 16.7kJ	
	Correct: +4 · Incorrect: -1
3 A system goes from A to B via two processes I and II as shown in kgure. If ΔU_1 and ΔU_2 are the charprocesses I and II respectively then	nges in internal energies in the

JEE MAins PYQs Thermodynamics (Physics Master Academy) \cdot Section A \cdot Questions

- \bigcirc relation between $\triangle U_1$ and $\triangle U_2$ cannot be determined
- \bigcirc $U_1 = \Delta U_2$
- \bigcirc $U_1 < \Delta U_2$
- \bigcirc $U_1 > \Delta U_2$

- 4 Which of the following is incorrect regarding the krst law of thermodynamics?
 - it is re-statement to the principle of conservation of energy
 - it is not applicable to any cyclic process
 - it does not introduces the concept of the entropy
 - it introduces the concept of internal energy

Correct: +4 · Incorrect: -1

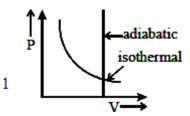
5 An ideal gas in a cylinder is separated by a piston in such a way that the entropy of one part is S_1 and that of the other part is S_2 . Given that $S_1 > S_2$. If the piston is removed then the total entropy of the system will be

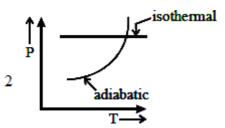
$$\bigcirc$$
 S₁ – S₂

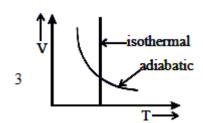
$$\bigcirc$$
 S₁ × S₂

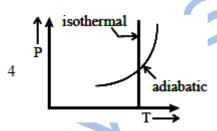
$$\bigcirc$$
 S_1/S_2

$$S_1 + S_2$$

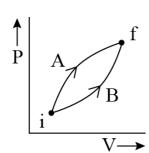

Correct: +4 · Incorrect: -1


6 For an adiabatic expansion of an ideal gas, the fractional change in its pressure is equal to (where γ is the ratio of specikc heat)


$$\bigcirc -\gamma \frac{V}{dV}$$

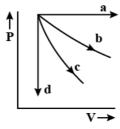

- $\bigcirc \ -\gamma \frac{dV}{V}$
- $\bigcirc \frac{-1}{\gamma} \frac{dV}{V}$
- $\bigcirc \frac{dV}{V}$

7 Which one is the correct option for the two different thermodynamics processes?



- (3) and (4)
- (1)Only
- (3) and (1)
- (2) and (3)

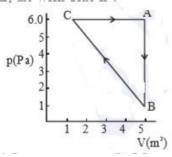
8 A balloon is klled with helium (32°C and 1.7atm) bursts. Immediately afterwards the expansion of helium can be considered as
irreversible isothermal
irreversible adiabatic
 reversible adiabatic
oreversible isothermal
Correct: +4 · Incorrect: -: A sample of an ideal gas is taken through the cyclic process abca as shown in kgure. The change in the internal energy of the gas along the path ca is – 180J. The gas absorbs 250J of heat along the path ab and 60J along the path bc. The work done by the gas along the path abc
$ \begin{array}{c} $
O 120J
O 130J
O 100J
O 140J
Correct: +4 · Incorrect: -:
A cylinder with kxed capacity of 67.2 lit contains helium gas at STP. The amount of heat needed to raise the temperature of the gas by 20°C is (given that R = 8.31J mol ⁻¹ K ⁻¹]
○ 350J
○ 374J
○ 748J
O 700J
Correct: +4 · Incorrect: -
11 Following kgure shows two processes A and B of a gas. If ΔQ_A and ΔQ_B are the amount of heat absorbed by the system in two cases, and ΔU_A and ΔU_B are changes in internal energies, respectively, then



- $\bigcirc \ \Delta \, Q_{A} {<} \Delta \, Q_{B}, \Delta \, U_{A} {<} \Delta \, U_{B}$
- $\bigcirc \ \Delta \, Q_{A} {>} \Delta \, Q_{B}, \Delta \, U_{A} {>} \Delta \, U_{B}$
- $\bigcirc \Delta Q_A > \Delta Q_B, \Delta U_A = \Delta U_B$
- $\bigcirc \Delta Q_A = \Delta Q_B, \Delta U_A = \Delta U_B$

- A thermally insulated vessel contains 150g of water at 0°C. Then the air from the vessel is pumped out adiabatically. A fraction of water turns into ice and the rest evaporates at 0°C itself. The mass of evaporated water will be close to (Latent heat of vaporization of water = 2.10×10^6 J kg⁻¹ and latent heat of Fusion of water = 3.36×10^5 J kg⁻¹)
 - O 150g
 - O 20g
 - O 130g
 - 35g

Correct: +4 · Incorrect: -1


13 The given diagram shows four processes i.e. isochoric, isobaric, isothermal and adiabatic. The correct assignment of the processes, in the same order is given by

- adbc
- dacb
- \bigcirc adcb

\bigcirc	da	hc

14 For the give cyclic process CAB as shown for gas, the work done is

- 30J
- O 10J
- 1J
- 5J

Correct: +4 · Incorrect: -1

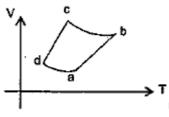
Half mode of an ideal monoatomic gas is heated at constant pressure of 1atm from 20°C to 90°C. Work done by gas is close to (Gas constant R = 8.31J/mol-K)

- O 581J
- O 291J
- O 146J
- O 73J

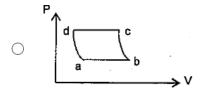
Correct: +4 · Incorrect: -1

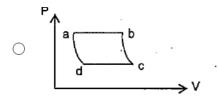
One mole of an ideal monoatomic gas is compressed isothermally in a rigd vessel to double its pressure at room temperature 27°C. The work done on the gas will be

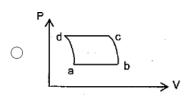
- O 300R In 6
- 300R
- O 300R In 7
- O 300R In 2

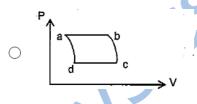

Correct: +4 · Incorrect: -1

c


d has the V-T diagram shown below. Process d


→ a and b


c are adiabatic



The corresponding P-V diagram for the process is (all kgures are schematic and not drawn to scale)

Correct: +4 · Incorrect: -1

18 The question has Statement 1 and Statement 2. Of the four choices given after the statements, choose the one that best describes the two statements.

Statement 1: In an adiabatic process, change in internal energy of a gas is equal to work done by the gas in the process.

Statement 2: The temperature of a gas remains constant in an adiabatic process.

- O Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation of Statement 1
- O Statement 1 is true, Statement 2 is false

\circ	Statement 1 is false, Statement 2 is true	
\circ	Statement 1 is false, Statement 2 is true, Statement 2 is not a correct explanation of Statement 1	
	Corre	ect: +4 · Incorrect: -1
	A heat engine operates between a cold reservoir at temperature $T_2 = 400$ JK and a hot reservoir at temperature T_1 rom the hot reservoir and delivers 240 J of heat to the cold reservoir in a cycle. The minimum temperature of the h	
0	250	K
\circ	300	
0	500	
0	550 Corre	ect: +4 · Incorrect: -1
	A heat engine has n efkciency of 1/6. When the temperature of sink is reduced by 62°C, its efkciency get doubled. urce is	
0	124°C	
0	37°C	
0	62°C	
0	99°C	
	Corre	ect: +4 · Incorrect: -1
	A Carnot's engine working between 400K and 800K has a work output of 1200J per cycle. The amount of heat ene e from the source in each cycle is	rgy supplied to the
0	1800J	
0	3200J	
0	16003	
\circ	2400J	
	Corre	ect: +4 · Incorrect: -1
22 There	Three Carnot engines operate in series between a heat source at a temperature T_1 and a heat sin at temperature T_2 are two other reservoirs at temperatures T_2 and T_3 as shown with $T_1 > T_2 > T_3 > T(4)$. The three engines are equally	

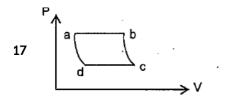
JEE MAins PYQs Thermodynamics (Physics Master Academy) \cdot Section A \cdot Questions

\Box T ₁	
\bigcirc_{ϵ_1}	
T_2	
$\bigcup_{\epsilon_2} T_3$	
Οε3	A
T_4	
$T_2=0$	
$\bigcirc T_2 = \mathcal{L}$	
○ T ₂ =i	
○ T ₂ = ¿	
	Correct: +4 · Incorrect: -1
23 A Carnot's engine works as a refrigerator between 2150K and 300K. It receives 500 cal heat from the reset temperature. The amount of work done in each cycle to operate the refrigerator is	rvoir at the lower
O 420J	
O 2100J	
O 772J	
O 2520J	
	Correct: +4 · Incorrect: -1
24 A solid boy of constant heat capacity 1J/°C is being heated by keeping it in contact with reservoirs n two was (i) Sequentially keeping in contact with 2 reservoirs such that each reservoir supplies same amount of heat	
(ii) Sequentially keeping in contact with 8 reservoirs such that each reservoir supplies same amount of heat In both cases body is brought from initial temperature 100°C to knal temperature 200°C. Entropy change of the I respectively is	oody in the two cases
○ In2, 2In2	
○ 2ln2, 8ln2	
○ In2, 4In2	
○ In2, In2	

25	The door of working refrigerator is left open in a well insulated room. The temperature of air in the room will
0	decrease
0	increase in winters and decrease in summers
0	remain the same
0	increase
	Correct: -1

JEE MAins PYQs Thermodynamics ((Physics Master Academy))

ANSWERS


SECTIONS

1. Section A - 25 Questions

Section 1: Section A - 25 Questions

- 1 path functions
- 2 16.7kJ
- **3** $U_1 = \Delta U_2$
- 4 it is not applicable to any cyclic process it does not introduces the concept of the entropy
- **5** $S_1 + S_2$
- $6 \gamma \frac{dV}{V}$
- 7 (3) and (4)
- 8 irreversible adiabatic
- **9** 130J
- **10** 748J

- $\Delta Q_A > \Delta Q_B$, $\Delta U_A = \Delta U_B$
- 20g
- dabc
- 10J
- 291J
- 300R ln 2

- 18 Statement 1 is true, Statement 2 is false
- 500
- 99°C
- 2400J
- 22 T = i
- 420J
- 24 ln2, ln2

FOR FULL SOLUTIONS VISIT OUR APP.

